
10 Confidence intervals

10.1 Estimation uncertainty

An estimator provides an approximation of an unknown population parameter as a single real
number or vector, which we call a point estimate. For instance, when we estimate the linear
relationship between wage, education, and gender using an OLS, we obtain a specific set of
coefficients:

cps = read.csv("cps.csv")
lm(wage ~ education + female, data = cps) |> coef()

(Intercept) education female
-14.081788 2.958174 -7.533067

However, the point estimate ̂𝛽𝑗 alone does not reflect how close or far the estimate might
be from the true population parameter 𝛽𝑗. It doesn’t capture estimation uncertainty. This
inherent uncertainty arises because point estimates are based on a finite sample, which may
vary from sample to sample.

Larger samples tend to give more accurate OLS estimates as OLS is unbiased and consistent
under assumptions (A1)–(A4). However, we work with fixed, finite samples in practice.

Confidence intervals address this limitation by providing a range of values likely to contain
the true population parameter. By constructing an interval around our point estimate that
contains the true parameter with a specified probability (e.g., 95% confidence level), we can
express the uncertainty more clearly.

In this section, we will introduce interval estimates, commonly referred to as confidence
intervals. To construct a confidence interval for an OLS coefficient ̂𝛽𝑗, we need two com-
ponents: a standard error (an estimate of the standard deviation of the estimator) and
information about the distribution of ̂𝛽𝑗.
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10.2 Gaussian distribution

The Gaussian distribution, also known as the normal distribution, is a fundamental
concept in statistics. We often use these terms interchangeably: a random variable 𝑍 is said
to follow a Gaussian or normal distribution if it has the following probability density function
(PDF) with a given mean 𝜇 and variance 𝜎2:

𝑓(𝑢) = 1√
2𝜋𝜎2 exp ( − (𝑢 − 𝜇)2

2𝜎2 ).

Formally, we denote this as 𝑍 ∼ 𝒩(𝜇, 𝜎2), meaning that 𝑍 is normally distributed with mean
𝜇 and variance 𝜎2.

• Mean: 𝐸[𝑍] = 𝜇
• Variance: 𝑉 𝑎𝑟(𝑍) = 𝜎2

• Skewness: 𝑠𝑘𝑒𝑤(𝑍) = 0
• Kurtosis: 𝑘𝑢𝑟𝑡(𝑍) = 3

par(mfrow=c(1,2), bty="n", lwd=1)
x = seq(-5,9,0.01) # define grid for x-axis for the plot
plot(x, dnorm(x, mean = 2, sd = sqrt(2)), type="l", main="PDF of N(2,2)", ylab="", xlab="")
plot(x, pnorm(x, mean = 2, sd = sqrt(2)), type="l", main="CDF of N(2,2)", ylab="", xlab="")
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Use the R functions dnorm to calculate normal PDF values and pnorm for normal CDF values.

The Gaussian distribution with mean 0 and variance 1 is called the standard normal dis-
tribution. It has the PDF

𝜙(𝑢) = 1√
2𝜋 exp ( − 𝑢2

2 )
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and CDF
Φ(𝑎) = ∫

𝑎

−∞
𝜙(𝑢) d𝑢.

𝒩(0, 1) is symmetric around zero:

𝜙(𝑢) = 𝜙(−𝑢), Φ(𝑎) = 1 − Φ(−𝑎)

Standardizing: If 𝑍 ∼ 𝒩(𝜇, 𝜎2), then

𝑍 − 𝜇
𝜎 ∼ 𝒩(0, 1),

and the CDF of 𝑍 is Φ((𝑍 − 𝜇)/𝜎).
Linear combinations of normally distributed variables are normal: If 𝑌1, … , 𝑌𝑛 are normally
distributed and 𝑐1, … , 𝑐𝑛 ∈ ℝ, then ∑𝑛

𝑗=1 𝑐𝑗𝑌𝑗 is normally distributed.

10.2.1 Multivariate Gaussian distribution

Let 𝑍1, … , 𝑍𝑘 be independent 𝒩(0, 1) random variables. Then, the 𝑘-vector 𝑍𝑍𝑍 = (𝑍1, … , 𝑍𝑘)′

has the multivariate standard normal distribution, written 𝑍𝑍𝑍 ∼ 𝒩(000,𝐼𝐼𝐼𝑘). Its joint
density is

𝑓(𝑢𝑢𝑢) = 1
(2𝜋)𝑘/2 exp (−𝑢𝑢𝑢′𝑢𝑢𝑢

2 ) .

If 𝑍𝑍𝑍 ∼ 𝒩(000,𝐼𝐼𝐼𝑘) and 𝑍𝑍𝑍∗ = 𝜇𝜇𝜇 + 𝐵𝐵𝐵𝑍𝑍𝑍 for a 𝑞 × 1 vector 𝜇𝜇𝜇 and a 𝑞 × 𝑘 matrix 𝐵𝐵𝐵, then 𝑍𝑍𝑍∗ has
a multivariate normal distribution with mean vector 𝜇𝜇𝜇 and covariance matrix ΣΣΣ = 𝐵𝐵𝐵𝐵𝐵𝐵′,
written 𝑍𝑍𝑍∗ ∼ 𝒩(𝜇𝜇𝜇,ΣΣΣ). The 𝑘-variate PDF of 𝑍𝑍𝑍∗ is

𝑓(𝑢𝑢𝑢) = 1
(2𝜋)𝑘/2(det(ΣΣΣ))1/2 exp ( − 1

2(𝑢𝑢𝑢 − 𝜇𝜇𝜇)′ΣΣΣ−1(𝑢𝑢𝑢 − 𝜇𝜇𝜇)).

The mean vector and covariance matrix are

𝐸[𝑍𝑍𝑍∗] = 𝜇𝜇𝜇, 𝑉 𝑎𝑟(𝑍𝑍𝑍∗) = ΣΣΣ.
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The 3d plot shows the bivariate normal PDF with parameters

𝜇𝜇𝜇 = (0
0) , ΣΣΣ = ( 1 0.8

0.8 1 ) .

10.2.2 Chi-squared distribution

Let 𝑍1, … , 𝑍𝑚 be independent 𝒩(0, 1) random variables. Then, the random variable

𝑌 =
𝑚

∑
𝑖=1

𝑍2
𝑖

is chi-squared distributed with parameter 𝑚, written 𝑌 ∼ 𝜒2
𝑚.

The parameter 𝑚 is called the degrees of freedom.
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Figure 10.1: PDF of the 𝜒2-distribution
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• Mean: 𝐸[𝑌 ] = 𝑚
• Variance: 𝑉 𝑎𝑟(𝑌 ) = 2𝑚
• Skewness: 𝑠𝑘𝑒𝑤(𝑌 ) = √8/𝑚
• Kurtosis: 𝑘𝑢𝑟𝑡(𝑌 ) = 3 + 12/𝑚

10.2.3 Student t-distribution

If 𝑍 ∼ 𝒩(0, 1) and 𝑄 ∼ 𝜒2
𝑚, and 𝑍 and 𝑄 are independent, then

𝑌 = 𝑍
√𝑄/𝑚

is 𝑡-distributed with parameter 𝑚 degrees of freedom, written 𝑌 ∼ 𝑡𝑚.
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Figure 10.2: PDFs of the Student 𝑡-distribution

The 𝑡-distribution with 𝑚 = 1 is also called Cauchy distribution. The 𝑡-distributions with 1,
2, 3, and 4 degrees of freedom are heavy-tailed distributions. If 𝑚 → ∞ then 𝑡𝑚 → 𝒩(0, 1)

• Mean: 𝐸[𝑌 ] = 0 if 𝑚 ≥ 2
• Variance: 𝑉 𝑎𝑟(𝑌 ) = 𝑚

𝑚−2 if 𝑚 ≥ 3
• Skewness: 𝑠𝑘𝑒𝑤(𝑌 ) = 0 if 𝑚 ≥ 4
• Kurtosis: 𝑘𝑢𝑟𝑡(𝑌 ) = 3 + 6/(𝑚 − 4) if 𝑚 ≥ 5

The kurtosis is infinite for 𝑚 ≤ 4, the skewness is undefined for 𝑚 ≤ 3, the variance is infinite
for 𝑚 ≤ 2, and the mean is undefined for 𝑚 = 1.

121



10.3 Classical Gaussian regression model

Let’s revisit the linear regression model:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛. (10.1)

Under assumptions (A1)–(A4), the distributional restrictions on the error term are relatively
mild:

1) The error terms are i.i.d. but can have different conditional variances depending on the
values of the regressors (heteroskedasticity):

𝑉 𝑎𝑟(𝑢𝑖|𝑋𝑋𝑋𝑖) = 𝜎2(𝑋𝑋𝑋𝑖) = 𝜎2
𝑖 .

For example, in a regression of wage on female, the error variances for women may differ
from those for men.

2) The error term can follow any distribution, provided that the fourth moment (the kur-
tosis) is finite. This excludes heavy-tailed distributions.

In standard introductory textbooks, two additional assumptions are often made to further
restrict the properties mentioned above. It is beneficial to first study the estimation uncertainty
under this simplified setting.

Classical Gaussian regression model

In addition to the linear regression model in Equation 10.1 with assumptions (A1)–(A4), we
introduce two more assumptions:

• (A5) Homoskedasticity: The error terms have constant variance across all observations,
i.e.,

𝑉 𝑎𝑟(𝑢𝑖|𝑋𝑋𝑋𝑖) = 𝜎2
𝑖 = 𝜎2 for all 𝑖 = 1, … , 𝑛.

• (A6) Normality: The error terms are normally distributed conditional on the regressors,
i.e.,

𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2
𝑖 ).

(A5)-(A6) combined can be expressed as:

𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2) for all 𝑖 = 1, … , 𝑛.

The notation 𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2) means that the conditional distribution of 𝑢𝑖 conditional on
𝑋𝑋𝑋𝑖 is 𝑁(0, 𝜎2). The PDF of 𝑢𝑖|𝑋𝑋𝑋𝑖 is

𝑓(𝑢) = 1√
2𝜋𝜎2 exp ( − 𝑢2

2𝜎2 ).
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Distribution of the OLS coefficients

Conditional on 𝑋𝑋𝑋, the OLS coefficient vector is a linear combination of the error term:

̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌
= 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢.

Consequently, under (A6), the OLS estimator follows a 𝑘-variate normal distribution, condi-
tionally on 𝑋𝑋𝑋.

Recall that the mean is 𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽 and the covariance matrix is

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

Under homoskedasticity (A5), we have 𝐷𝐷𝐷 = 𝜎2𝐼𝐼𝐼𝑛, so the covariance matrix simplifies to

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

Therefore,
̂𝛽𝛽𝛽|𝑋𝑋𝑋 ∼ 𝒩(𝛽𝛽𝛽, 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1).

The variance of the 𝑗-th OLS coefficient is

𝑉 𝑎𝑟( ̂𝛽𝑗|𝑋𝑋𝑋) = 𝜎2[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗,

where [(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗 indicates the 𝑗-th diagonal element of the matrix (𝑋𝑋𝑋′𝑋𝑋𝑋)−1. The standard
deviation is:

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) = √𝜎2[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.
Therefore, the standardized OLS coefficient has a standard normal distribution:

𝑍𝑗 ∶=
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
∼ 𝒩(0, 1). (10.2)

10.4 Confidence interval: known variance

One of the most common methods of incorporating estimation uncertainty into estimation
results is through interval estimates, often referred to as confidence intervals.

A confidence interval is a range of values that is likely to contain the true population parameter
with a specified confidence level or coverage probability, often expressed as a percentage
(e.g., 95%). For example, a 95% confidence interval suggests that, across many repeated
samples, approximately 95% of the intervals constructed from those samples would contain
the true population parameter.
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A symmetric confidence interval for 𝛽𝑗 with confidence level 1 − 𝛼 is an interval

𝐼1−𝛼 = [ ̂𝛽𝑗 − 𝑐1−𝛼; ̂𝛽𝑗 + 𝑐1−𝛼]

with the property that
𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼. (10.3)

Common coverage probabilities are 0.95, 0.99, and 0.90.

Note that 𝐼1−𝛼 is random and 𝛽𝑗 is fixed but unknown. Therefore, the coverage probability is
the probability that this random interval 𝐼1−𝛼 contains the true parameter.

A more precise interpretation of a confidence interval is:

If we were to repeat the sampling process and construct confidence intervals for each sample,
1 − 𝛼 of those intervals would contain the true population parameter.

It is essential to understand that the confidence interval reflects the reliability of the method,
not the probability of the true parameter falling within a particular interval. The interval itself
is random – it varies with each sample – but the population parameter is fixed and unknown.

Thus, it is incorrect to interpret a specific confidence interval as having a 95% probability
of containing the true value. Instead, the correct interpretation is that the method used to
calculate the interval has a 95% success rate across many samples.

The width of the interval

The OLS coefficient ̂𝛽𝑗 is in the center of 𝐼1−𝛼. Let’s solve for 𝑐1−𝛼 to get the width of the
confidence interval.

The event {𝛽𝑗 ∈ 𝐼1−𝛼} can be rearranged as

𝛽𝑗 ∈ 𝐼1−𝛼

⇔ ̂𝛽𝑗 − 𝑐1−𝛼 ≤ 𝛽𝑗 ≤ ̂𝛽𝑗 + 𝑐1−𝛼

⇔ −𝑐1−𝛼 ≤ 𝛽𝑗 − ̂𝛽𝑗 ≤ 𝑐1−𝛼

⇔ 𝑐1−𝛼 ≥ ̂𝛽𝑗 − 𝛽𝑗 ≥ −𝑐1−𝛼

⇔ 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

≥ 𝑍𝑗 ≥ − 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

with 𝑍𝑗 defined in Equation 10.2. Hence, Equation 10.3 becomes

𝑃( −𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

≤ 𝑍𝑗 ≤ 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

) = 1 − 𝛼. (10.4)
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Since 𝑍𝑗 is standard normal by Equation 10.2, we have

𝑃( −𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

≤ 𝑍𝑗 ≤ 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

)

= Φ( 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

) − Φ( −𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

)

= Φ( 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

) − (1 − Φ( 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

))

= 2Φ( 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

) − 1.

With Equation 10.4, we get
1 − 𝛼 = 2Φ( 𝑐1−𝛼

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
) − 1.

Let’s add 1 and divide by 2:
1 − 𝛼

2 = Φ( 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

), (10.5)

where (2 − 𝛼)/2 = 1 − 𝛼/2.

The value 𝑧(𝑝) is the 𝑝-quantile of 𝒩(0, 1) if Φ(𝑧(𝑝)) = 𝑝. We write Φ−1(𝑝) = 𝑧(𝑝), where
the quantile function Φ−1 is the inverse function of the CDF Φ with Φ(Φ−1(𝑝)) = 𝑝 and
Φ−1(Φ−1(𝑧)) = 𝑧.

Then, applying the quantile function Φ−1 to Equation 10.5 gives:

⇔ Φ−1(1 − 𝛼
2 ) = 𝑐1−𝛼

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
⇔ 𝑧(1− 𝛼

2 ) = 𝑐1−𝛼
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

⇔ 𝑧(1− 𝛼
2 ) ⋅ 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) = 𝑐1−𝛼,

where 𝑧(1− 𝛼
2 ) is the 1 − 𝛼/2-quantile of 𝒩(0, 1). The solution for the confidence interval is:

𝐼1−𝛼 = [ ̂𝛽𝑗 − 𝑧(1− 𝛼
2 ) ⋅ 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋); ̂𝛽𝑗 + 𝑧(1− 𝛼

2 ) ⋅ 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)].

Standard normal quantiles can be obtained using the R command qnorm or by using statistical
tables:
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Table 10.1: Some quantiles of the standard normal distribution

0.9 0.95 0.975 0.99 0.995
1.28 1.64 1.96 2.33 2.58

Therefore, 90%, 95%, and 99% confidence intervals for 𝛽𝑗 are given by

𝐼0.9 = [ ̂𝛽𝑗 − 1.64 ⋅ 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋); ̂𝛽𝑗 + 1.64 ⋅ 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)]
𝐼0.95 = [ ̂𝛽𝑗 − 1.96 ⋅ 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋); ̂𝛽𝑗 + 1.96 ⋅ 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)]
𝐼0.99 = [ ̂𝛽𝑗 − 2.58 ⋅ 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋); ̂𝛽𝑗 + 2.58 ⋅ 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)]

With probability 𝛼, the interval does not cover the true parameter. The smaller we choose
𝛼, the more confident we can be that the interval covers the true parameter, but the larger
the interval becomes. If we set 𝛼 = 0, the interval would be infinite, providing no useful
information.

A certain amount of uncertainty always remains, but we can control it by choosing an ap-
propriate value for 𝛼 that balances our desired level of confidence with the precision of the
estimate. This is why the coverage probability (1 − 𝛼) is also called the confidence level.

Note that this interval is infeasible in practice because the conditional standard deviation is
unknown:

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) = √𝜎2[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.

It requires knowledge about the true error variance 𝑉 𝑎𝑟(𝑢𝑖|𝑋𝑋𝑋) = 𝜎2.

10.5 Classical standard errors

A standard error 𝑠𝑒( ̂𝛽𝑗) for an estimator ̂𝛽𝑗 is an estimator of the standard deviation of the
distribution of ̂𝛽𝑗.

We say that the standard error is consistent if

𝑠𝑒( ̂𝛽𝑗)
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

𝑝
→ 1. (10.6)

This property ensures that, in practice, we can replace the unknown standard deviation with
the standard error in confidence intervals.

Under the classical Gaussian regression model, we have

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) = √𝜎2[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.
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Therefore, it is natural to replace the population error variance 𝜎2 by the adjusted sample
variance of the residuals:

𝑠2
�̂� = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

�̂�2
𝑖 = 𝑆𝐸𝑅2.

The classical homoskedastic standard errors are:

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) = √𝑠2
�̂�[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.

The classical homoskedastic covariance matrix estimator for 𝑉 𝑎𝑟( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) is

𝑉𝑉𝑉 ℎ𝑜𝑚 = 𝑠2
�̂�(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

fit = lm(wage ~ education + female, data = cps)
## classical homoskedastic covariance matrix estimator:
vcov(fit)

(Intercept) education female
(Intercept) 0.18825476 -0.0127486354 -0.0089269796
education -0.01274864 0.0009225111 -0.0002278021
female -0.00892698 -0.0002278021 0.0284200217

The classical standard errors are the square roots of the diagonal elements of this matrix:

## classical standard errors:
sqrt(diag(vcov(fit)))

(Intercept) education female
0.43388334 0.03037287 0.16858239

These standard errors are also displayed in the second column of a regression output:

summary(fit)

Call:
lm(formula = wage ~ education + female, data = cps)

Residuals:
Min 1Q Median 3Q Max

-45.071 -9.035 -2.973 4.472 244.491
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.08179 0.43388 -32.45 <2e-16 ***
education 2.95817 0.03037 97.39 <2e-16 ***
female -7.53307 0.16858 -44.69 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.76 on 50739 degrees of freedom
Multiple R-squared: 0.1797, Adjusted R-squared: 0.1797
F-statistic: 5559 on 2 and 50739 DF, p-value: < 2.2e-16

Because 𝑠2
�̂�/𝜎2 𝑝

→ 1, property Equation 10.6 is satisfied and 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) is a consistent standard
error under homoskedasticity.

Note that the main result we used to derive the confidence interval is that the standardized
OLS coefficient is standard normal:

𝑍𝑗 ∶=
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
∼ 𝒩(0, 1).

If we replace the unknown standard deviation 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) with the standard error 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗), the
distribution changes.

The OLS estimator standardized with the standard error is called t-statistic:

𝑇𝑗 =
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)
= 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
= 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)
𝑍𝑗.

The additional factor satisfies

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)

= 𝜎
𝑠�̂�

∼ √(𝑛 − 𝑘)/𝜒2
𝑛−𝑘,

where 𝜒2
𝑛−𝑘 is the chi-squared distribution with 𝑛 − 𝑘 degrees of freedom, independent of 𝑍𝑗.

Therefore, the t-statistic is t-distributed:

𝑇𝑗 =
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)
= 𝜎

𝑠�̂�
𝑍𝑗 ∼ 𝒩(0, 1)

√𝜒2
𝑛−𝑘/(𝑛 − 𝑘)

= 𝑡𝑛−𝑘. (10.7)
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Consequently, if we replace the unknown standard deviation 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) with the standard error
𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) in the confidence interval formula, we have to replace the standard normal quantiles
by t-quantiles:

𝐼 (ℎ𝑜𝑚)
1−𝛼 = [ ̂𝛽𝑗 − 𝑡(1− 𝛼

2 ,𝑛−𝑘)𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡(1− 𝛼
2 ,𝑛−𝑘)𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)]

This interval is feasible and satisfies 𝑃(𝛽𝑗 ∈ 𝐼 (ℎ𝑜𝑚)
1−𝛼 ) = 1 − 𝛼 under (A1)–(A6).

Table 10.2: Student’s 𝑡-distribution quantiles

df 0.9 0.95 0.975 0.99 0.995
1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
8 1.40 1.86 2.31 2.90 3.36
10 1.37 1.81 2.23 2.76 3.17
15 1.34 1.75 2.13 2.60 2.95
20 1.33 1.72 2.09 2.53 2.85
25 1.32 1.71 2.06 2.49 2.79
30 1.31 1.70 2.04 2.46 2.75
40 1.30 1.68 2.02 2.42 2.70
50 1.30 1.68 2.01 2.40 2.68
60 1.30 1.67 2.00 2.39 2.66
80 1.29 1.66 1.99 2.37 2.64
100 1.29 1.66 1.98 2.36 2.63
→ ∞ 1.28 1.64 1.96 2.33 2.58

We can use the coefci function from the AER package:

library(AER)
coefci(fit)

2.5 % 97.5 %
(Intercept) -14.932204 -13.231372
education 2.898643 3.017705
female -7.863490 -7.202643
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coefci(fit, level = 0.99)

0.5 % 99.5 %
(Intercept) -15.199440 -12.964137
education 2.879936 3.036412
female -7.967322 -7.098811

10.6 Confidence intervals: heteroskedasticity

The exact confidence interval 𝐼 (ℎ𝑜𝑚)
1−𝛼 is only valid under the restrictive assumption of ho-

moskedasticity (A5) and normality (A6).

For historical reasons, statistics books often treat homoskedasticity as the standard case and
heteroskedasticity as a special case. However, this does not reflect empirical practice since we
have to expect heteroskedastic errors in most applications. It turns out that heteroskedasticity
is not a problem as long as the robust standard errors are used.

plot(abs(fit$residuals)~fit$fitted.values)
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A plot of the absolute value of the residuals against the fitted values shows that individuals with
predicted wages around 10 USD exhibit residuals with lower variance compared to those with
higher predicted wage levels. Hence, the homoskedasticity assumption (A5) is implausible.

If (A5) does not hold, then standard deviation is

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) = √[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.
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To estimate 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋), we will have to replace the diagonal matrix

𝐷𝐷𝐷 = 𝑑𝑖𝑎𝑔(𝜎2
1, … , 𝜎2

𝑛)

by some sample counterpart
𝐷𝐷𝐷 = 𝑑𝑖𝑎𝑔(�̂�2

1, … , �̂�2
𝑛).

Various heteroskedasticity-consistent (HC) standard errors have been proposed in the
literature:

HC type weights
HC0 �̂�2

𝑖 = �̂�2
𝑖

HC1 �̂�2
𝑖 = 𝑛

𝑛−𝑘 �̂�2
𝑖

HC2 �̂�2
𝑖 = �̂�2

𝑖
1−ℎ𝑖𝑖

HC3 �̂�2
𝑖 = �̂�2

𝑖
(1−ℎ𝑖𝑖)2

HC0 replaces the unknown variances with squared residuals, and HC1 is a bias-corrected
version of HC0. HC2 and HC3 use the leverage values ℎ𝑖𝑖 (the diagonal entries of the influence
matrix 𝑃𝑃𝑃 ) and give less weight to influential observations.

HC1 and HC3 are the most common choices and can be written as

𝑠𝑒ℎ𝑐1( ̂𝛽𝑗) = √[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1( 𝑛
𝑛 − 𝑘

𝑛
∑
𝑖=1

�̂�2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]
𝑗𝑗

,

𝑠𝑒ℎ𝑐3( ̂𝛽𝑗) = √[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1(
𝑛

∑
𝑖=1

�̂�2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]

𝑗𝑗
.

All versions perform similarly well in large samples, but HC3 performs best in small samples
and is the preferred choice.

HC standard errors are also known as heteroskedasticity-robust standard errors or sim-
ply robust standard errors.

Estimators for the full covariance matrix of ̂𝛽𝛽𝛽 have the form

𝑉𝑉𝑉 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

The HC3 covariance estimator can be written as

𝑉𝑉𝑉 ℎ𝑐3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(
𝑛

∑
𝑖=1

�̂�2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.
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Therefore, we can use confidence intervals of the form:

𝐼 (ℎ𝑐)
1−𝛼 = [ ̂𝛽𝑗 − 𝑡(1− 𝛼

2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡(1− 𝛼
2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗)].

In contrast to Equation 10.7, the distribution of the ratio 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)/𝑠𝑒ℎ𝑐( ̂𝛽𝑗) is unknown in
practice, and the t-statistic is not t-distributed.

However, for large 𝑛, we have

𝑇 (ℎ𝑐)
𝑗 =

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
= 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)⏟⏟⏟⏟⏟
𝑝
→1

𝑍𝑗⏟
∼𝒩(0,1)

which implies that
lim

𝑛→∞
𝑃(𝛽𝑗 ∈ 𝐼 (ℎ𝑐)

1−𝛼) = 1 − 𝛼. (10.8)

Therefore 𝐼 (ℎ𝑐)
1−𝛼 is an asymptotic confidence interval for 𝛽𝑗.

## HC3 covariance matrix estimate Vhat-hc3
vcovHC(fit)

(Intercept) education female
(Intercept) 0.25013606 -0.019590435 0.013394891
education -0.01959043 0.001609169 -0.002173848
female 0.01339489 -0.002173848 0.026131235

## HC3 standard errors
sqrt(diag(vcovHC(fit)))

(Intercept) education female
0.50013604 0.04011445 0.16165158

## HC1 standard errors
sqrt(diag(vcovHC(fit, type = "HC1")))

(Intercept) education female
0.50007811 0.04011017 0.16164436
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coefci(fit, vcov = vcovHC, level = 0.99)

0.5 % 99.5 %
(Intercept) -15.370102 -12.793475
education 2.854842 3.061506
female -7.949469 -7.116664

Robust confidence intervals can also be used and hold asymptotically under (A5). Therefore,
the exact classical confidence intervals should only be used if there are very good reasons for
the error terms to be homoskedastic and normally distributed.

10.7 Confidence interval with non-normal errors

Similar to the homoskedasticity assumption (A5), the normality assumption (A6) is also not
satisfied in most applications. A useful diagnostic plot is the Q-Q-plot.

The Q-Q-plot is a graphical tool to help us assess if the errors are conditionally normally
distributed, i.e. whether assumption (A6) is satisfied.

Let �̂�(𝑖) be the sorted residuals (i.e. �̂�(1) ≤ … ≤ �̂�(𝑛)). The Q-Q-plot plots the sorted residuals
�̂�(𝑖) against the ((𝑖 − 0.5)/𝑛)-quantiles of the standard normal distribution.

If the residuals are lined well on the straight dashed line, there is indication that the distribution
of the residuals is close to a normal distribution.

par(mfrow = c(1,2))
# Normally distributed response variable
plot(lm(rnorm(500) ~ 1), which = 2)
plot(fit, which=2)
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In the left plot you see the Q-Q-plot for an example with normally distributed errors. The
right plot indicates that, in our regression of wage on education and female, the normality
assumption is implausible.

If (A6) does not hold, then 𝑍𝑗 is not normally distributed, and it is unclear whether Equa-
tion 10.8 holds. However, by the central limit theorem, we still can establish that

lim
𝑛→∞

𝑃(𝛽𝑗 ∈ 𝐼 (ℎ𝑐)
1−𝛼) = 1 − 𝛼.

Therefore, the robust confidence interval 𝐼 (ℎ𝑐)
1−𝛼 is asymptotically valid if (A1)–(A4) hold.

10.8 Central limit theorem

Convergence in distribution

Let 𝑊𝑊𝑊 𝑛 be a sequence of 𝑘-variate random variables and let 𝑉𝑉𝑉 be a 𝑘-variate random variable

𝑊𝑊𝑊 𝑛 converges in distribution to 𝑉𝑉𝑉 , written 𝑊𝑊𝑊 𝑛
𝑑→ 𝑉𝑉𝑉 , if

lim
𝑛→∞

𝑃(𝑊𝑊𝑊 𝑛 ≤ 𝑎𝑎𝑎) = 𝑃(𝑉𝑉𝑉 ≤ 𝑎𝑎𝑎)

for all 𝑎𝑎𝑎 at which the CDF of 𝑉𝑉𝑉 is continuous.

If 𝑉𝑉𝑉 has the distribution 𝒩(𝜇𝜇𝜇,ΣΣΣ), we write 𝑊𝑊𝑊 𝑛
𝑑→ 𝒩(𝜇𝜇𝜇,ΣΣΣ).

Consider for simplicity the regression on an intercept only. In this case, we have 𝑘 = 1 and
̂𝛽1 = 𝑌 (see the second problem set).
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By the univariate central limit theorem, the centered sample mean converges to a normal
distribution:

Central Limit Theorem (CLT)

Let {𝑌1, … , 𝑌𝑛} be an i.i.d. sample with 𝐸[𝑌𝑖] = 𝜇 and 0 < 𝑉 𝑎𝑟(𝑌𝑖) = 𝜎2 < ∞. Then, the
sample mean satisfies

√𝑛( 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖 − 𝜇) 𝑑⟶ 𝒩(0, 𝜎2).

Below, you will find an interactive shiny app for the central limit theorem:

SHINY APP: CLT

The same result can be extended to 𝑘-variate random vectors.

Multivatiate Central Limit Theorem (MCLT)

If {𝑊𝑊𝑊 1, … ,𝑊𝑊𝑊 𝑛} is an i.i.d. sample with 𝐸[𝑊𝑊𝑊 𝑖] = 𝜇𝜇𝜇 and 𝑉 𝑎𝑟(𝑊𝑊𝑊 𝑖) = ΣΣΣ < ∞. Then,

√𝑛( 1
𝑛

𝑛
∑
𝑖=1

𝑊𝑊𝑊 𝑖 − 𝜇𝜇𝜇) 𝑑→ 𝒩(000,ΣΣΣ)

(see, e.g., Stock and Watson Section 19.2).

If we apply the MCLT to the random sequence 𝑊𝑊𝑊 𝑖 = 𝑋𝑋𝑋𝑖𝑢𝑖 with 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000 and 𝑉 𝑎𝑟(𝑋𝑋𝑋𝑖𝑢𝑖) =
ΩΩΩ = 𝐸[𝑢2

𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖], then we get

√𝑛( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖)
𝑑→ 𝒩(000,ΩΩΩ).

Therefore, we get

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) = √𝑛( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖)
𝑑→ 𝑄𝑄𝑄−1𝒩(000,ΩΩΩ),

because 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝑄𝑄𝑄 = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]. Since 𝑉 𝑎𝑟[𝑄𝑄𝑄−1𝒩(000,ΩΩΩ)] = 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1, we have the
following central limit theorem for the OLS estimator:

Central Limit Theorem for OLS

Consider the general linear regression model Equation 10.1 under assumptions (A1)–(A4).
Then, as 𝑛 → ∞,

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) 𝑑→ 𝒩(000,𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1).

135



A direct consequence is that the robust t-statistic is asymptotically standard normal:

𝑇 (ℎ𝑐)
𝑗 =

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
𝑑→ 𝒩(0, 1).

Also note that the t-distribution 𝑡𝑛−𝑘 approaches the standard normal distribution as 𝑛 grows.
Therefore, we have

𝑡𝑛−𝑘
𝑑→ 𝒩(0, 1)

and we can write

𝑇 (ℎ𝑐)
𝑗 =

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
𝑎∼ 𝑡𝑛−𝑘.

This notation means that 𝑇 (ℎ𝑐)
𝑗 is asymptotically t-distributed. I.e., the distributions of 𝑇 (ℎ𝑐)

𝑗
becomes closer to a 𝑡𝑛−𝑘 distribution as 𝑛 grows.

Therefore, it is still reasonable to use t-quantiles in robust confidence intervals instead of stan-
dard normal quantiles. It also turns out that for smaller sample sizes, confidence intervals with
t-quantiles tend to yield better small sample coverages that using standard normal quantiles.

10.9 CASchools data

Let’s revisit the test score application from the previous section and compare HC-robust con-
fidence intervals:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2
fit1 = lm(score ~ STR, data = CASchools)
fit2 = lm(score ~ STR + english, data = CASchools)
fit3 = lm(score ~ STR + english + lunch, data = CASchools)
fit4 = lm(score ~ STR + english + lunch + expenditure, data = CASchools)
library(stargazer)

coefci(fit1, vcov=vcovHC)

2.5 % 97.5 %
(Intercept) 678.371140 719.4948
STR -3.310516 -1.2491
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coefci(fit2, vcov=vcovHC)

2.5 % 97.5 %
(Intercept) 668.7102930 703.3541961
STR -1.9604231 -0.2421682
english -0.7112962 -0.5882574

coefci(fit3, vcov=vcovHC)

2.5 % 97.5 %
(Intercept) 689.0614539 711.2384604
STR -1.5364346 -0.4601833
english -0.1869188 -0.0562281
lunch -0.5951529 -0.4995380

The confidence intervals for STR in the first three models do not cover 0 and are strictly
negative. This gives strong statistical evidence that the marginal effect of STR on score is
negative, holding english and lunch fixed.

coefci(fit4, vcov=vcovHC)

2.5 % 97.5 %
(Intercept) 645.329067184 686.64732942
STR -0.882408250 0.41163186
english -0.192981575 -0.06370184
lunch -0.592410029 -0.50037547
expenditure 0.001738419 0.00550568

In the fourth model, the point estimator for the marginal effect of STR is negative, but the
confidence interval also covers positive values. Therefore, there is no statistical evidence that
the marginal effect of STR on score holding english, lunch, and expenditure fixed.

However, as discussed in the previous section, expenditure is a bad control for STR and should
not be used to estimate the effect of class size on test score.

10.10 R-codes

statistics-sec10.R
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