
11 Hypothesis testing

11.1 Statistical hypotheses

A statistical hypothesis is a statement about the population distribution. For instance, we
might be interested in the hypothesis that a population regression coefficient 𝛽𝑗 of a linear
regression model is equal to some value 𝛽0

𝑗 or whether it is unequal to that value.

For instance, in a regression of test scores on the student-teacher ratio, we might be interested
in testing whether adding one more student per class has no effect on test scores – that is,
whether 𝛽𝑗 = 𝛽0

𝑗 = 0.

In hypothesis testing, we divide the parameter space of interest into a null hypothesis and an
alternative hypothesis, for instance

𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗⏟⏟⏟⏟⏟

null hypothesis

vs. 𝐻1 ∶ 𝛽𝑗 ≠ 𝛽0
𝑗 .⏟⏟⏟⏟⏟

alternative hypothesis

(11.1)

This idea is not limited to regression coefficients. For any parameter 𝜃 we can test the hypoth-
esis 𝐻0 ∶ 𝜃 = 𝜃0 against its alternative 𝐻1 ∶ 𝜃 ≠ 𝜃0.

In practice, two-sided alternatives are more common, i.e. 𝐻1 ∶ 𝜃 ≠ 𝜃0, but one-sided alterna-
tives are also possible, i.e. 𝐻1 ∶ 𝜃 > 𝜃0 (right-sided) or 𝐻1 ∶ 𝜃 < 𝜃0 (left-sided).

We are interested in testing 𝐻0 against 𝐻1. The idea of hypothesis testing is to construct a
statistic 𝑇0 (test statistic) for which the distribution of 𝑇0 under the assumption that 𝐻0
holds(null distribution) is known, and for which the distribution under 𝐻1 differs from the
null distribution (i.e., the null distribution is informative about 𝐻1).

If the observed value of 𝑇0 takes a value that is likely to occur under the null distribution,
we deduce that there is no evidence against 𝐻0, and consequently we do not reject 𝐻0 (we
accept 𝐻0). If the observed value of 𝑇0 takes a value that is unlikely to occur under the null
distribution, we deduce that there is evidence against 𝐻0, and consequently, we reject 𝐻0 in
favor of 𝐻1.

“Unlikely” means that its occurrence has only a small probability 𝛼. The value 𝛼 is called the
significance level and must be selected by the researcher. It is conventional to use the values
𝛼 = 0.1, 𝛼 = 0.05, or 𝛼 = 0.01, but it is not a hard rule.

138



A hypothesis test with significance level 𝛼 is a decision rule defined by a rejection region 𝐼1
and an acceptance region 𝐼0 = 𝐼𝑐

1 so that we

do not reject 𝐻0 if 𝑇0 ∈ 𝐼0,
reject 𝐻0 if 𝑇0 ∈ 𝐼1.

The rejection region is defined such that a false rejection occurs with probability 𝛼, i.e.

𝑃(𝑇0 ∈ 𝐼1⏟
reject

∣ 𝐻0 is true) = 𝛼, (11.2)

where 𝑃(⋅ ∣ 𝐻0 is true) denotes the probability function of the null distribution.

A test that satisfies Equation 11.2 is called a size-𝛼-test. The type I error is the probability
of falsely rejecting 𝐻0 and equals 𝛼 for a size-𝛼-test. The type II error is the probability of
falsely accepting 𝐻0 and depends on the sample size 𝑛 and the unknown parameter value 𝜃
under 𝐻1. Typically, the further 𝜃 is from 𝜃0, and the larger the sample size 𝑛, the smaller
the type II error.

The probability of a type I error is also called the size of a test:

𝑃(reject 𝐻0 ∣ 𝐻0 is true).
The power of a test is the complementary probability of a type II error:

𝑃(reject 𝐻0 ∣ 𝐻1 is true) = 1 − 𝑃(accept 𝐻0 ∣ 𝐻1 is true).
A hypothesis test is consistent for 𝐻1 if the power tends to 1 as 𝑛 tends to infinity for any
parameter value under the alternative.

Table 11.1: Testing Decisions

Accept 𝐻0 Reject 𝐻0
𝐻0 is true correct decision type I error
𝐻1 is true type II error correct decision

In many cases, the probability distribution of 𝑇0 under 𝐻0 is known only asymptotically. Then,
the rejection region must be defined such that

lim
𝑛→∞

𝑃(𝑇0 ∈ 𝐼1 ∣ 𝐻0 is true) = 𝛼.

We call this test an asymptotic size-𝛼-test.

The decision “accept 𝐻0” does not mean that 𝐻0 is true. Since the probability of a type II
error is unknown in practice, it is more accurate to say that we “fail to reject 𝐻0” instead of
“accept 𝐻0”. The power of a consistent test tends to 1 as 𝑛 increases, so type II errors typically
occur if the sample size is too small. Therefore, to interpret a “fail to reject 𝐻0”, we have to
consider whether our sample size is relatively small or rather large.
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11.2 t-Tests

The t-statistic is the OLS estimator standardized with the standard error. Under (A1)–(A4)
we have

𝑇 =
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
𝑑→ 𝒩(0, 1).

This result can be used to test the hypothesis 𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗 . The t-statistic for this hypothesis

is

𝑇0 =
̂𝛽𝑗 − 𝛽0

𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
,

which satisfies 𝑇0 = 𝑇 𝑑→ 𝒩(0, 1) under 𝐻0.

Therefore, we can test 𝐻0 by checking whether the presumed value 𝛽0
𝑗 falls into the confidence

interval. We do not reject 𝐻0 if

𝛽0
𝑗 ∈ 𝐼 (ℎ𝑐)

1−𝛼 = [ ̂𝛽𝑗 − 𝑡(1− 𝛼
2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡(1− 𝛼

2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗)].

By the definition of 𝑇0, we have 𝛽0
𝑗 ∈ 𝐼 (ℎ𝑐)

1−𝛼 if and only if |𝑇0| ≤ 𝑡(1− 𝛼
2 ,𝑛−𝑘).

Therefore, the two-sided t-test for 𝐻0 against 𝐻1 ∶ 𝛽𝑗 ≠ 𝛽0
𝑗 is given by the test decision

do not reject 𝐻0 if |𝑇0| ≤ 𝑡(1− 𝛼
2 ,𝑛−𝑘),

reject 𝐻0 if |𝑇0| > 𝑡(1− 𝛼
2 ,𝑛−𝑘).

The value 𝑡(1− 𝛼
2 ,𝑛−𝑘) is called the critical value.

This test is asymptotically of size 𝛼:

lim
𝑛→∞

𝑃(we reject 𝐻0|𝐻0 is true) = 𝛼.

This is because the confidence interval has asymptotically a 1 − 𝛼 coverage rate:

lim
𝑛→∞

𝑃(we do not reject 𝐻0|𝐻0 is true)

= lim
𝑛→∞

𝑃(𝛽0
𝑗 ∈ 𝐼 (ℎ𝑐)

1−𝛼|𝐻0 is true)

= lim
𝑛→∞

𝑃(𝛽𝑗 ∈ 𝐼 (ℎ𝑐)
1−𝛼)

= 1 − 𝛼.

If (A5)–(A6) hold, and 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) is used instead of 𝑠𝑒ℎ𝑐( ̂𝛽𝑗), then the t-test is of exact size 𝛼.
However, as discussed in the previous section, (A5)–(A6) is an unlikely scenario in practice.
Therefore 𝑠𝑒ℎ𝑐( ̂𝛽𝑗) is the preferred choice.
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library(AER)
cps = read.csv("cps.csv")
fit = lm(wage ~ education + female, data = cps)
coefci(fit, vcov = vcovHC, level = 0.99)

0.5 % 99.5 %
(Intercept) -15.370102 -12.793475
education 2.854842 3.061506
female -7.949469 -7.116664

The 99% confidence intervals indicate that:

• the null hypothesis 𝐻0 ∶ 𝛽2 = 0 (“the marginal effect of education on the wage conditional
on gender is 0”) is rejected at the 1% significance level.

• the null hypothesis 𝐻0 ∶ 𝛽2 = 3 (“the marginal effect of education on the wage conditional
on gender is 3”) is not rejected at the 1% significance level.

Let’s compute 𝑇0 for the hypothesis 𝛽2 = 3 by hand:

## OLS coefficient
betahat2 = fit$coefficient[2]
## HC standard error
se = sqrt(vcovHC(fit)[2,2])
## presumed value for beta2
beta20 = 3
c(betahat2, beta20, se)

education
2.95817398 3.00000000 0.04011445

## test statistic
T0 = (betahat2 - beta20)/se
T0

education
-1.042667

## critical values for 1=%, 5% and 1% levels
n = length(fit$fitted.values)
qt(c(0.95, 0.975, 0.995), df=n-3)
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[1] 1.644884 1.960011 2.575926

Since |𝑇0| = 1.04 is smaller that the critical values for all common significance levels, we cannot
reject 𝐻0 ∶ 𝛽2 = 3.

11.3 The p-value

The p-value is a criterion to reach a hypothesis test decision conveniently:

reject 𝐻0 if p-value < 𝛼
do not reject 𝐻0 if p-value ≥ 𝛼

Formally, the p-value of a two-sided t-test is defined as

𝑝-value = 𝑃(|𝑇 ∗| > |𝑇0| ∣ 𝐻0 is true),

where 𝑇 ∗ is a random variable following the null distribution (in this case, 𝑇 ∗ ∼ 𝑡𝑛−𝑘), and 𝑇0
is the observed value of the test statistic.

The p-value is the probability that a null-distributed random variable produces values at least
as extreme as the test statistic 𝑇0 produced for your sample.

We can express the p-value also using the CDF 𝐹𝑇0
of the null distribution (in this case,

𝑡𝑛−𝑘):

𝑝-value = 𝑃(|𝑇 ∗| > |𝑇0| ∣ 𝐻0 is true)
= 1 − 𝑃(|𝑇 ∗| ≤ |𝑇0| ∣ 𝐻0 is true)
= 1 − 𝐹𝑇0

(|𝑇0|) + 𝐹𝑇0
(−|𝑇0|)

= 2(1 − 𝐹𝑇0
(|𝑇0|)).

Make no mistake, the p-value is not the probability that 𝐻0 is true! It is a measure of how
likely it is that the observed test statistic comes from a sample that has been drawn from a
population where the null hypothesis is true.

Let’s compute the p-value for the hypothesis 𝛽2 = 3 in the wage on education and female
regression by hand. Here, 𝐹𝑇0

is the CDF of the t-distribution with 𝑛 − 3 degrees of freedom.
To compute 𝐹𝑇0

(𝑎), we can use pt(a, df=n-3).

## p-value
2*(1-pt(abs(T0), df = n-3))
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education
0.2971074

The p-value is larger than any common significance level. Hence, we do not reject 𝐻0.

For the hypothesis 𝐻0 ∶ 𝛽2 = 0, we get the following p-value:

T0 = (betahat2 - 0)/se
2*(1-pt(abs(T0), df = n-3))

education
0

The p-value is (almost) 0. Hence, we reject 𝐻0.

More conveniently, the coeftest function from the AER package provides a full summary of
the regression results including the t-statistics and p-values for the hypotheses that 𝐻0 ∶ 𝛽𝑗 = 0
for 𝑗 = 1, … , 𝑘.

coeftest(fit, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.081788 0.500136 -28.156 < 2.2e-16 ***
education 2.958174 0.040114 73.743 < 2.2e-16 ***
female -7.533067 0.161652 -46.601 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You can specify different standard errors: coeftest(fit, vcov = vcovHC, type = "HC1").
coeftest(fit) returns the t-test results for classical standard errors which is identical to the
output of the base-R command summary(fit), which should not be used in applications with
heteroskedasticity.

To represent very small numbers where there are, e.g., 16 zero digits before the first nonzero
digit after the decimal point, R uses scientific notation in the form e-16. For example, 2.2e-16
means 0.00000000000000022.
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11.4 Multiple testing problem

Consider the usual two-sided t-tests for the hypotheses 𝐻0 ∶ 𝛽1 = 0 (test1) and 𝐻0 ∶ 𝛽2 = 0
(test2).

Each test on its own is a valid hypothesis test of size 𝛼. However, applying these tests one
after the other leads to a multiple testing problem. The probability of falsely rejecting the
joint hypothesis

𝐻0 ∶ 𝛽1 = 0 and 𝛽2 = 0 vs. 𝐻1 ∶ not 𝐻0

is too large. “Not 𝐻0” means “𝛽1 ≠ 0 or 𝛽2 ≠ 0 or both”.

To see this, suppose that, for simplicity, the t-statistics ̂𝛽1/𝑠𝑒( ̂𝛽1) and ̂𝛽2/𝑠𝑒( ̂𝛽2) are indepen-
dent random variables, which implies that the test decisions of the two tests are independent.

𝑃(both tests do not reject ∣ 𝐻0 true)
= 𝑃 ({test1 does not reject} ∩ {test2 does not reject} ∣ 𝐻0 true)
= 𝑃(test1 does not reject ∣ 𝐻0 true) ⋅ 𝑃 (test2 does not reject ∣ 𝐻0 true)
= (1 − 𝛼)2 = 𝛼2 − 2𝛼 + 1

The size of the combined test is larger than 𝛼:

𝑃(at least one test rejects ∣ 𝐻0 is true)
= 1 − 𝑃(both tests do not reject ∣ 𝐻0 is true)
= 1 − (𝛼2 − 2𝛼 + 1) = 2𝛼 − 𝛼2 = 𝛼(2 − 𝛼) > 𝛼

If the two test statistics are dependent, then the probability of at least one of the tests falsely
rejecting depends on their correlation and will also exceed 𝛼.

Each t-test has a probability of falsely rejecting 𝐻0 (type I error) of 𝛼, but if multiple t-tests
are used on different coefficients, then the probability of falsely rejecting at least once (joint
type I error probability) is greater than 𝛼 (multiple testing problem).

Therefore, when multiple hypotheses are to be tested, repeated t-tests will not yield valid
inferences, and another rejection rule must be found for repeated 𝑡-tests.

11.5 Joint Hypotheses

Consider the general hypothesis
𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟,

where 𝑅𝑅𝑅 is a 𝑞 × 𝑘 matrix with rank(𝑅𝑅𝑅) = 𝑞 and 𝑟𝑟𝑟 is a 𝑞 × 1 vector.
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Let’s look at a linear regression with 𝑘 = 3:

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖3 + 𝑢𝑖

• Example 1: The hypothesis 𝐻0 ∶ (𝛽2 = 0 and 𝛽3 = 0) implies 𝑞 = 2 constraints and is
translated to 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 with

𝑅𝑅𝑅 = (0 1 0
0 0 1) , 𝑟𝑟𝑟 = (0

0) .

• Example 2: The hypothesis 𝐻0 ∶ 𝛽2 + 𝛽3 = 1 implies 𝑞 = 1 constraint and is translated
to 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 with

𝑅𝑅𝑅 = (0 1 1) , 𝑟𝑟𝑟 = (1) .

In practice, the most common multiple hypothesis tests are tests of whether multiple coeffi-
cients are equal to zero, which is a test of whether those regressors should be included in the
model.

11.6 Wald Test

The Wald distance is the vector 𝑑𝑑𝑑 = 𝑅𝑅𝑅 ̂𝛽𝛽𝛽−𝑟𝑟𝑟, and the Wald statistic is the squared standardized
Wald distance vector:

𝑊 = 𝑑𝑑𝑑′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1𝑑𝑑𝑑
= (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)

Here, 𝑉𝑉𝑉 is a suitable estimator for covariance matrix of the OLS coefficient vector, i.e. 𝑉𝑉𝑉 ℎ𝑐 for
robust testing under (A1)–(A4), and 𝑉𝑉𝑉 ℎ𝑜𝑚 for testing under the special case of homoskedas-
ticity.

Under 𝐻0 we have
𝑊 𝑑→ 𝜒2

𝑞.

The test decision for the Wald test:

do not reject 𝐻0 if 𝑊 ≤ 𝜒2
(1−𝛼,𝑞),

reject 𝐻0 if 𝑊 > 𝜒2
(1−𝛼,𝑞),

where 𝜒2
(𝑝,𝑞) is the 𝑝-quantile of the chi-squared distribution with 𝑞 degrees of freedom. 𝜒2

(𝑝,𝑞)
can be returned using qchisq(p,q).

To test 𝐻0 ∶ 𝛽2 = 𝛽3 = 0 in the regression of wage on education and female (example 1), we
can use the linearHypothesis() function from the AER package:
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## Define r and R
r = c(0,0)
R = rbind(
c(0,1,0),
c(0,0,1)

)
R

[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 0 1

linearHypothesis(fit,
hypothesis.matrix = R,
rhs = r,
vcov = vcovHC,
test = "Chisq")

Linear hypothesis test

Hypothesis:
education = 0
female = 0

Model 1: restricted model
Model 2: wage ~ education + female

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 50741
2 50739 2 5977.4 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The null hypothesis is rejected because the p-value is very small. To confirm this, we see in the
output that the Wald statistic is 𝑊 = 5977. The critical value for the common significance
levels are:
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qchisq(c(0.9, 0.95, 0.99), df=2)

[1] 4.605170 5.991465 9.210340

To compute the Wald statistic 𝑊 by hand, we need matrix algebra:

betahat = fit$coefficients
## Wald distance:
d = R %*% betahat - r
## Wald statistic
W = t(d) %*% solve(R %*% vcovHC(fit) %*% t(R)) %*% d
W

[,1]
[1,] 5977.396

Instead of definition the matrix R and vector r, we can also specify our restrictions in
linearHypothesis() directly:

linearHypothesis(fit,
c("education = 0", "female = 0"),
vcov = vcovHC,
test = "Chisq")

Linear hypothesis test

Hypothesis:
education = 0
female = 0

Model 1: restricted model
Model 2: wage ~ education + female

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 50741
2 50739 2 5977.4 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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If vcov = vcovHC is omitted, then the homoskedasticity-only covariance matrix 𝑉𝑉𝑉 ℎ𝑜𝑚 is used.
If test = "Chisq is omitted, then the F-test is applied, which is introduced below.

11.7 F-Test

The Wald test is an asymptotic size-𝛼-test under (A1)–(A4). Even if (A5) and (A6) hold true
as well, the Wald test is still only asymptotically valid, i.e.:

lim
𝑛→∞

𝑃(Wald test rejects 𝐻0|𝐻0 true) = 𝛼.

Similarly to the classical t-test, we can construct a test joint test that is of exact size 𝛼 under
(A1)–(A6).

The 𝐹 statistic is the Wald statistic scaled by the number of constraints:

𝐹 = 𝑊
𝑞 = 1

𝑞 (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟).

If (A1)–(A6) hold true, and if 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑜𝑚 is used, it can be shown that

𝐹 ∼ 𝐹𝑞;𝑛−𝑘

for any finite sample size 𝑛, where 𝐹𝑞;𝑛−𝑘 is the F-distribution with 𝑞 degrees of freedom in
the numerator and 𝑛 − 𝑘 degrees of freedom in the denominator.

F-distribution

If 𝑄1 ∼ 𝜒2
𝑚 and 𝑄2 ∼ 𝜒2

𝑟, and if 𝑄1 and 𝑄2 are independent, then

𝑌 = 𝑄1/𝑚
𝑄2/𝑟

is 𝐹 -distributed with parameters 𝑚 and 𝑟, written 𝑌 ∼ 𝐹𝑚,𝑟.

The parameter 𝑚 is called the degrees of freedom in the numerator; 𝑟 is the degree of freedom
in the denominator.

If 𝑟 → ∞ then the distribution of 𝑚𝑌 approaches 𝜒2
𝑚
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Figure 11.1: 𝐹 -distribution

F-test decision rule

The test decision for the F-test:

do not reject 𝐻0 if 𝐹 ≤ 𝐹(1−𝛼,𝑞,𝑛−𝑘),
reject 𝐻0 if 𝐹 > 𝐹(1−𝛼,𝑞,𝑛−𝑘),

where 𝐹(𝑝,𝑚1,𝑚2) is the 𝑝-quantile of the F distribution with 𝑚1 degrees of freedom in the
numerator and 𝑚2 degrees of freedom in the denominator. 𝐹(𝑝,𝑚1,𝑚2) can be returned using
qf(p,m1,m2).

For single constraint (𝑞 = 1) hypotheses of the form 𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗 , the F-test is equivalent to

a two-sided t-test.

• If (A1)–(A6) hold true and 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑜𝑚 is used, the F-test has exact size 𝛼, similar to the
exact t-test for this case.

• If (A1)–(A5) hold true and 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑜𝑚 is used, the F-test and the Wald-test have asymp-
totic size 𝛼.

• If (A1)–(A4) hold true and 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑐 is used, the F-test and the Wald-test have asymp-
totic size 𝛼.

The F-test tends to be more conservative than the Wald test in small samples, meaning that
rejection by the F-test generally implies rejection by the Wald test, but not necessarily vice
versa. Due to this more conservative nature, which helps control false rejections (Type I errors)
in small samples, the F-test is often preferred in practice.

149



linearHypothesis(fit,
c("education = 0", "female = 0"),
vcov = vcovHC,
test = "F")

Linear hypothesis test

Hypothesis:
education = 0
female = 0

Model 1: restricted model
Model 2: wage ~ education + female

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 50741
2 50739 2 2988.7 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, we have 𝐹 = 𝑊/2. The critical values for the common significance level can be obtained
as follows:

n = length(fit$fitted.values)
k = 3
q = 2
qf(c(0.9, 0.95, 0.99), q, n-k)

[1] 2.302690 2.995909 4.605588

Since 𝐹 = 2988.7, the null hypothesis is rejected at all common significance levels.

11.8 Diagnostics tests

The asymptotic properties of the OLS estimator and inferential methods using HC-type stan-
dard errors do not depend on the validity of the homoskedasticity and normality assumptions
(A5)–(A6).
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However, if you are interested in exact inference, verifying the assumptions (A5)–(A6) becomes
crucial, especially in small samples.

11.8.1 Breusch-Pagan Test (Koenker’s version)

Under homoskedasticity, the variance of the error term does not depend on the values of the
regressors.

To test for heteroskedasticity, we regress the squared residuals on the regressors.

𝑢̂2
𝑖 = 𝑋𝑋𝑋′

𝑖𝛾𝛾𝛾 + 𝑣𝑖, 𝑖 = 1, … , 𝑛. (11.3)

Here, 𝛾𝛾𝛾 are the auxiliary coefficients and 𝑣𝑖 are the auxiliary error terms. Under homoskedas-
ticity, the regressors should not be able to explain any variation in the residuals.

Let 𝑅2
𝑎𝑢𝑥 be the R-squared coefficient of the auxiliary regression of Equation 11.3. The test

statistic:
𝐵𝑃 = 𝑛𝑅2

𝑎𝑢𝑥

Under the null hypothesis of homoskedasticity, we have

𝐵𝑃 𝑑→ 𝜒2
𝑘−1

Test decision rule: Reject 𝐻0 if 𝐵𝑃 exceeds 𝜒2
(1−𝛼,𝑘−1).

In R we can apply the bptest() function from the AER package to the lm object of our
regression.

bptest(fit)

studentized Breusch-Pagan test

data: fit
BP = 1070.3, df = 2, p-value < 2.2e-16

The BP test clearly rejects 𝐻0, which is strong statistical evidence that the errors are het-
eroskedastic.
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11.8.2 Jarque-Bera Test

A general property of any normally distributed random variable is that it has a skewness of 0
and a kurtosis of 3.

Under (A5)–(A6), we have 𝑢𝑖 ∼ 𝒩(0, 𝜎2), which implies 𝐸[𝑢3
𝑖 ] = 0 and 𝐸[𝑢4

𝑖 ] = 3𝜎4.

Consider the sample skewness and the sample kurtosis of the residuals from your regression:

𝑠𝑘𝑒𝑤𝑢̂ = 1
𝑛𝜎̂3

𝑢̂

𝑛
∑
𝑖=1

𝑢̂3
𝑖 , 𝑘𝑢𝑟𝑡𝑢̂ = 1

𝑛𝜎̂4
𝑢̂

𝑛
∑
𝑖=1

𝑢̂4
𝑖

Jarque-Bera test statistic and null distribution if (A5)–(A6) hold:

𝐽𝐵 = 𝑛(1
6(𝑠𝑘𝑒𝑤𝑢̂)2 + 1

24(𝑘𝑢𝑟𝑡𝑢̂ − 3)2) 𝑑→ 𝜒2
2.

Test decision rule: Reject the null hypothesis of normality if 𝐽𝐵 exceeds 𝜒2
(1−𝛼,2).

Note that the Jarque-Bera test is sensitive to outliers.

In R we apply use the jarque.test() function from the moments package to the residual
vector from our regression.

library(moments)
jarque.test(fit$residuals)

Jarque-Bera Normality Test

data: fit$residuals
JB = 2230900, p-value < 2.2e-16
alternative hypothesis: greater

The JB test clearly rejects 𝐻0, which is strong statistical evidence that the errors are not
normally distributed.

The results of the BP and the JB test indicate that classical standard errors 𝑠𝑒(𝛽𝑗) and the
classical covariance matrix estimators 𝑉𝑉𝑉 ℎ𝑜𝑚 should not be used. Instead, HC-versions should
be applied.
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11.9 Nonliearities in test score regressions

Let’s use the hypothesis tests from this section to conduct a study on the relationship between
test scores and the student-teacher ratio.

data(CASchools, package = "AER")
## append student-teacher ratio
CASchools$STR = CASchools$students/CASchools$teachers
## append average test score
CASchools$score = (CASchools$read+CASchools$math)/2
## append high English learner share dummy variable
CASchools$HiEL = (CASchools$english >= 10) |> as.numeric()

This section examines three key questions about test scores and the student-teacher ratio.

• First, it explores if reducing the student-teacher ratio affects test scores differently based
on the number of English learners, even when considering economic differences across
districts.

• Second, it investigates if this effect varies depending on the student-teacher ratio.

• Lastly, it aims to determine the expected impact on test scores when the student-teacher
ratio decreases by two students per teacher, considering both economic factors and po-
tential nonlinear relationships.

The logarithm of district income is used following our previous empirical analysis, which sug-
gested that this specification captures the nonlinear relationship between scores and income.

We leave out the expenditure per pupil (expenditure) from our analysis because including it
would suggest that spending changes with the student-teacher ratio (in other words, we would
not be holding expenditures per pupil constant: bad control).

We will consider 7 different model specifications:

# estimate all models
mod1 = lm(score ~ STR + english + lunch, data = CASchools)
mod2 = lm(score ~ STR + english + lunch + log(income), data = CASchools)
mod3 = lm(score ~ STR + HiEL + HiEL:STR, data = CASchools)
mod4 = lm(score ~ STR + HiEL + HiEL:STR + lunch + log(income), data = CASchools)
mod5 = lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + lunch + log(income),

data = CASchools)
mod6 = lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2)

+ HiEL:I(STR^3) + lunch + log(income), data = CASchools)
mod7 = lm(score ~ STR + I(STR^2) + I(STR^3) + english + lunch + log(income),
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data = CASchools)

# gather robust standard errors in a list
rob_se = list(sqrt(diag(vcovHC(mod1))),

sqrt(diag(vcovHC(mod2))),
sqrt(diag(vcovHC(mod3))),
sqrt(diag(vcovHC(mod4))),
sqrt(diag(vcovHC(mod5))),
sqrt(diag(vcovHC(mod6))),
sqrt(diag(vcovHC(mod7))))

library(stargazer)
stargazer(mod1, mod2, mod3, mod4,

mod5, mod6, mod7,
font.size = "footnotesize",
se = rob_se,
type="latex",
omit.stat = "f", df=FALSE, header = FALSE)

The stars in the regression output indicate the statistical significance of each coefficient based
on a t-test of the hypothesis 𝐻0 ∶ 𝛽𝑗 = 0. No stars indicate that the coefficient is not
statistically significant (cannot reject 𝐻0 at conventional significance levels). One star (∗)
denotes significance at the 10% level (pval < 0.10), two stars (∗∗) indicate significance at the
5% level (pval < 0.05), and three stars (∗∗∗) indicate significance at the 1% level (pval <
0.01).

What can be concluded from the results presented?

i) First, we find that there is evidence of heteroskedasticity and non-normality, because the
Breusch-Pagan test and the Jarque-Bera test reject. Therefore, HC-robust tests should
be used.

bptest(mod1)

studentized Breusch-Pagan test

data: mod1
BP = 9.9375, df = 3, p-value = 0.0191
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Table 11.2

Dependent variable:
score

(1) (2) (3) (4) (5) (6) (7)
STR −0.998∗∗∗ −0.734∗∗∗ −0.968 −0.531 64.339∗∗ 83.702∗∗∗ 65.285∗∗

(0.274) (0.261) (0.599) (0.350) (27.295) (31.506) (27.708)

english −0.122∗∗∗ −0.176∗∗∗ −0.166∗∗∗

(0.033) (0.034) (0.035)

I(STR 2̂) −3.424∗∗ −4.381∗∗∗ −3.466∗∗

(1.373) (1.597) (1.395)

I(STR 3̂) 0.059∗∗∗ 0.075∗∗∗ 0.060∗∗∗

(0.023) (0.027) (0.023)

lunch −0.547∗∗∗ −0.398∗∗∗ −0.411∗∗∗ −0.420∗∗∗ −0.418∗∗∗ −0.402∗∗∗

(0.024) (0.034) (0.029) (0.029) (0.029) (0.034)

log(income) 11.569∗∗∗ 12.124∗∗∗ 11.748∗∗∗ 11.800∗∗∗ 11.509∗∗∗

(1.841) (1.823) (1.799) (1.809) (1.834)

HiEL 5.639 5.498 −5.474∗∗∗ 816.076∗∗

(19.889) (10.012) (1.046) (354.100)

STR:HiEL −1.277 −0.578 −123.282∗∗

(0.986) (0.507) (54.290)

I(STR 2̂):HiEL 6.121∗∗

(2.752)

I(STR 3̂):HiEL −0.101∗∗

(0.046)

Constant 700.150∗∗∗ 658.552∗∗∗ 682.246∗∗∗ 653.666∗∗∗ 252.050 122.353 244.809
(5.641) (8.749) (12.071) (10.053) (179.724) (205.050) (181.899)

Observations 420 420 420 420 420 420 420
R2 0.775 0.796 0.310 0.797 0.801 0.803 0.801
Adjusted R2 0.773 0.794 0.305 0.795 0.798 0.799 0.798
Residual Std. Error 9.080 8.643 15.880 8.629 8.559 8.547 8.568

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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jarque.test(mod1$residuals)

Jarque-Bera Normality Test

data: mod1$residuals
JB = 10.626, p-value = 0.004926
alternative hypothesis: greater

ii) We see the estimated coefficient of STR is highly significant in all models except from
specifications (3) and (4).

iii) When we add log(income) to model (1) in the second specification, all coefficients
remain highly significant while the coefficient on the new regressor is also statistically
significant at the 1% level. In addition, the coefficient on STR is now 0.27 higher than in
model (1), which suggests a possible reduction in omitted variable bias when including
log(income) as a regressor. For these reasons, it makes sense to keep this variable in
other models too.

iv) Models (3) and (4) include the interaction term between STR and HiEL, first without
control variables in the third specification and then controlling for economic factors in
the fourth. The estimated coefficient for the interaction term is not significant at any
common level in any of these models, nor is the coefficient on the dummy variable HiEL.
However, this result is misleading and we should not conclude that none of the variables
has a non-zero marginal effect because the coefficients cannot be interpreted separately
from each other. What we can learn from the fact that the coefficient of STR:HiEL alone
is not significantly different from zero is that the impact of the student-teacher ratio on
test scores remains consistent across districts with high and low proportions of English
learning students. Let’s test the hypotheses that all coefficients that involve STR are
zero and all coefficients that involve HiEL are zero. We find that 𝐻0 is rejected for both
hypotheses and the overall marginal effects are clearly significant:

linearHypothesis(mod3, c("STR = 0", "STR:HiEL = 0"), vcov=vcovHC)

Linear hypothesis test

Hypothesis:
STR = 0
STR:HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + HiEL + HiEL:STR
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Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 418
2 416 2 5.4228 0.004732 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(mod3, c("HiEL = 0", "STR:HiEL = 0"), vcov=vcovHC)

Linear hypothesis test

Hypothesis:
HiEL = 0
STR:HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + HiEL + HiEL:STR

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 418
2 416 2 88.806 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

v) In regression (5) we have included quadratic and cubic terms for STR, while omitting the
interaction term between STR and HiEL, since it was not significant in specification (4).
The results indicate high levels of significance for these estimated coefficients and we can
therefore assume the presence of a nonlinear effect of the student-teacher ration on test
scores. This can be verified with an 𝐹 -test of 𝐻0 ∶ 𝛽3 = 𝛽4 = 0:

linearHypothesis(mod5, c("I(STR^2) = 0", "I(STR^3) = 0"), vcov=vcovHC)

Linear hypothesis test

Hypothesis:
I(STR^2) = 0
I(STR^3) = 0
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Model 1: restricted model
Model 2: score ~ STR + I(STR^2) + I(STR^3) + HiEL + lunch + log(income)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 415
2 413 2 5.0205 0.00701 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vi) Regression (6) further examines whether the proportion of English learners influences
the student-teacher ratio, incorporating the interaction terms 𝐻𝑖𝐸𝐿⋅𝑆𝑇 𝑅, 𝐻𝑖𝐸𝐿⋅𝑆𝑇 𝑅2

and 𝐻𝑖𝐸𝐿 ⋅ 𝑆𝑇 𝑅3. Each individual 𝑡-test confirms significant effects. To validate this,
we perform a robust 𝐹 -test to assess 𝐻0 ∶ 𝛽8 = 𝛽9 = 𝛽10 = 0.

linearHypothesis(mod6, c("STR:HiEL = 0", "I(STR^2):HiEL = 0", "I(STR^3):HiEL = 0"), vcov=vcovHC)

Linear hypothesis test

Hypothesis:
STR:HiEL = 0
I(STR^2):HiEL = 0
I(STR^3):HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2) +

HiEL:I(STR^3) + lunch + log(income)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 413
2 410 3 2.1885 0.08882 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vii) With a 𝑝-value of 0.08882 we can just reject the null hypothesis at the 10% level. This
provides only weak evidence that the regression functions are different for districts with
high and low percentages of English learners.
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viii) In model (7), we employ a continuous measure for the proportion of English learners
instead of a dummy variable (thus omitting interaction terms). We note minimal alter-
ations in the coefficient estimates for the remaining regressors. Consequently, we infer
that the findings observed in model (5) are robust and not influenced significantly by
the method used to measure the percentage of English learners.

We can now address the initial questions raised in this section:

• First, in the linear models, the impact of the percentage of English learners on changes
in test scores due to variations in the student-teacher ratio is minimal, a conclusion
that holds true even after accounting for students’ economic backgrounds. Although the
cubic specification (6) suggests that the relationship between student-teacher ratio and
test scores is influenced by the proportion of English learners, the magnitude of this
influence is not significant.

• Second, while controlling for students’ economic backgrounds, we identify nonlinearities
in the association between student-teacher ratio and test scores.

• Lastly, under the linear specification (2), a reduction of two students per teacher
in the student-teacher ratio is projected to increase test scores by approximately 1.46
points. As this model is linear, this effect remains consistent regardless of class size. For
instance, assuming a student-teacher ratio of 20, the nonlinear model (5) indicates
that the reduction in student-teacher ratio would lead to an increase in test scores by

64.33 ⋅ 18 + 182 ⋅ (−3.42) + 183 ⋅ (0.059)
− (64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059))

≈ 3.3

points. If the ratio was 22, a reduction to 20 leads to a predicted improvement in test
scores of

64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059)
− (64.33 ⋅ 22 + 222 ⋅ (−3.42) + 223 ⋅ (0.059))

≈ 2.4

points. This suggests that the effect is more evident in smaller classes.

11.10 R-codes

statistics-sec11.R
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