
1 Data

1.1 Datasets

A univariate dataset is a sequence of observations 𝑌1, … , 𝑌𝑛. These 𝑛 observations can be
organized into the data vector 𝑌𝑌𝑌 , represented as 𝑌𝑌𝑌 = (𝑌1, … , 𝑌𝑛)′. For example, if you
conduct a survey and ask five individuals about their hourly earnings, your data vector might
look like

𝑌𝑌𝑌 =
⎛⎜⎜⎜⎜⎜⎜
⎝

18.22
23.85
10.00
6.39
7.42

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Typically we have data on more than one variable, such as years of education and the gender.
Categorical variables are often encoded as dummy variables, which are binary variables. The
female dummy variable is defined as 1 if the gender of the person is female and 0 otherwise.

person wage education female
1 18.22 16 1
2 23.85 18 0
3 10.00 16 1
4 6.39 13 0
5 7.42 14 0

A 𝑘-variate dataset (or multivariate dataset) is a collection of 𝑛 vectors 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 containing
data on 𝑘 variables. The 𝑖-th vector 𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′ contains the data on all 𝑘 variables
for individual 𝑖. Thus, 𝑋𝑖𝑗 represents the value for the 𝑗-th variable of individual 𝑖.
The full 𝑘-variate dataset is structured in the 𝑛 × 𝑘 data matrix 𝑋𝑋𝑋:

𝑋𝑋𝑋 = ⎛⎜
⎝

𝑋𝑋𝑋′
1

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟
⎠

= ⎛⎜
⎝

𝑋11 … 𝑋1𝑘
⋮ ⋱ ⋮

𝑋𝑛1 … 𝑋𝑛𝑘

⎞⎟
⎠

The 𝑖-th row in 𝑋𝑋𝑋 corresponds to the values from 𝑋𝑋𝑋𝑖. Since 𝑋𝑋𝑋𝑖 is a column vector, we use the
transpose notation 𝑋𝑋𝑋′

𝑖, which is a row vector. The data matrix and vectors for our example

9

are:

𝑋𝑋𝑋 =
⎛⎜⎜⎜⎜⎜⎜
⎝

18.22 16 1
23.85 18 0
10.00 16 1
6.39 13 0
7.42 14 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝑋𝑋𝑋1 = ⎛⎜
⎝

18.22
16
1

⎞⎟
⎠

,𝑋𝑋𝑋2 = ⎛⎜
⎝

23.85
18
0

⎞⎟
⎠

, …

Vector and matrix algebra provide a compact mathematical representation of multivariate data
and an efficient framework for analyzing and implementing statistical methods. We will use
matrix algebra frequently throughout this course.

To refresh or enhance your knowledge of matrix algebra, please consult the following re-
sources:

Crash Course on Matrix Algebra:

matrix.svenotto.com
Section 19.1 of the Stock and Watson book also provides a brief overview of matrix
algebra concepts.

1.2 R programming language

The best way to learn statistical methods is to program and apply them yourself. Throughout
this course, we will use the R programming language for implementing empirical methods and
analyzing real-world datasets.

If you are just starting with R, it is crucial to familiarize yourself with its basics. Here’s an
introductory tutorial, which contains a lot of valuable resources:

Getting Started with R:

rintro.svenotto.com

For those new to R, I also recommend the interactive R package SWIRL, which offers an
excellent way to learn directly within the R environment. Additionally, a highly recommended
online book to learn R programming is Hands-On Programming with R.

One of the best features of R is its extensive ecosystem of packages contributed by the statis-
tical community. You find R packages for almost any statistical method out there and many
statisticians provide R packages to accompany their research.

One of the most frequently used packages in applied econometrics is the AER package (“Applied
Econometrics with R”), which provides a comprehensive collection of inferential methods for

10

linear models. You can install the package with the command install.packages("AER") and
you can load it with

library(AER)

at the beginning of your code. We will explore several additional packages in the course of the
lecture.

1.3 Datasets in R

R includes many built-in datasets and packages of datasets that can be loaded directly into
your R environment. For illustration, we consider the CASchools dataset available in the AER
package. This dataset is used in the Stock and Watson textbook in sections 4-8. It contains
information on various characteristics of schools in California, such as test scores, teacher
salaries, and student demographics.

To load this dataset into your R session, simply use:

data(CASchools, package = "AER")

To get a description of the dataset, use the ?CASchools command.

class(CASchools)

[1] "data.frame"

The CASchools dataset is stored as a data.frame, R’s most common data storage class for
tabular data as in 𝑋𝑋𝑋. It organizes data in the form of a table, with variables as columns and
observations as rows.

To inspect the structure of your dataset, you can use str():

str(CASchools)

'data.frame': 420 obs. of 14 variables:
$ district : chr "75119" "61499" "61549" "61457" ...
$ school : chr "Sunol Glen Unified" "Manzanita Elementary" "Thermalito Union Elementary" "Golden Feather Union Elementary" ...
$ county : Factor w/ 45 levels "Alameda","Butte",..: 1 2 2 2 2 6 29 11 6 25 ...
$ grades : Factor w/ 2 levels "KK-06","KK-08": 2 2 2 2 2 2 2 2 2 1 ...
$ students : num 195 240 1550 243 1335 ...

11

$ teachers : num 10.9 11.1 82.9 14 71.5 ...
$ calworks : num 0.51 15.42 55.03 36.48 33.11 ...
$ lunch : num 2.04 47.92 76.32 77.05 78.43 ...
$ computer : num 67 101 169 85 171 25 28 66 35 0 ...
$ expenditure: num 6385 5099 5502 7102 5236 ...
$ income : num 22.69 9.82 8.98 8.98 9.08 ...
$ english : num 0 4.58 30 0 13.86 ...
$ read : num 692 660 636 652 642 ...
$ math : num 690 662 651 644 640 ...

The dataset contains variables of different types: chr for character/text data, Factor for
categorical data, and num for numeric data. The head() function displays its first few rows:

head(CASchools)

district school county grades students teachers
1 75119 Sunol Glen Unified Alameda KK-08 195 10.90
2 61499 Manzanita Elementary Butte KK-08 240 11.15
3 61549 Thermalito Union Elementary Butte KK-08 1550 82.90
4 61457 Golden Feather Union Elementary Butte KK-08 243 14.00
5 61523 Palermo Union Elementary Butte KK-08 1335 71.50
6 62042 Burrel Union Elementary Fresno KK-08 137 6.40
calworks lunch computer expenditure income english read math

1 0.5102 2.0408 67 6384.911 22.690001 0.000000 691.6 690.0
2 15.4167 47.9167 101 5099.381 9.824000 4.583333 660.5 661.9
3 55.0323 76.3226 169 5501.955 8.978000 30.000002 636.3 650.9
4 36.4754 77.0492 85 7101.831 8.978000 0.000000 651.9 643.5
5 33.1086 78.4270 171 5235.988 9.080333 13.857677 641.8 639.9
6 12.3188 86.9565 25 5580.147 10.415000 12.408759 605.7 605.4

The pipe operator |> efficiently chains commands. It passes the output of one function as the
input to another. For example:

CASchools[,c("school", "county", "income")] |> summary()

school county income
Length:420 Sonoma : 29 Min. : 5.335
Class :character Kern : 27 1st Qu.:10.639
Mode :character Los Angeles: 27 Median :13.728

Tulare : 24 Mean :15.317
San Diego : 21 3rd Qu.:17.629

12

Santa Clara: 20 Max. :55.328
(Other) :272

The summary() function presents a concise overview, showing absolute frequencies for categor-
ical variables and descriptive statistics for numerical variables.

The variable students contains the total number of students enrolled in a school. It
is the fifth variable in the data set. To access the variable as a vector, you can type
CASchools[,5] (the fifth column in your data matrix), or CASchools[,"students"], or
simply CASchool$students.

We can easily add new variables to a dataframe, for instance, the student-teacher ratio (the
total number of students per teacher) and the average test score (average of the math and
reading scores):

compute student-teacher ratio and append it to CASchools
CASchools$STR = CASchools$students/CASchools$teachers
compute test score and append it to CASchools
CASchools$score = (CASchools$read+CASchools$math)/2

The variable english indicates the proportion of students whose first language is not English
and who may need additional support. We might be interested in the dummy variable HiEL,
which indicates whether the proportion of English learners is above 10 percent or not:

append HiEL to CASchools
CASchools$HiEL = (CASchools$english >= 10) |> as.numeric()

Note that CASchools$english >= 10 is a logical expression with either TRUE or FALSE values.
The command as.numeric() creates a dummy variable by translating TRUE to 1 and FALSE
to 0.

The first few values of some selected variables look like this:

CASchools[,c("STR", "score", "english", "HiEL", "income")] |> head()

STR score english HiEL income
1 17.88991 690.80 0.000000 0 22.690001
2 21.52466 661.20 4.583333 0 9.824000
3 18.69723 643.60 30.000002 1 8.978000
4 17.35714 647.70 0.000000 0 8.978000
5 18.67133 640.85 13.857677 1 9.080333
6 21.40625 605.55 12.408759 1 10.415000

13

Scatterplots provide further insights:

plot(score~STR, data = CASchools)

14 16 18 20 22 24 26

62
0

66
0

70
0

STR

sc
or

e

par(mfrow = c(1,2))
plot(score~income, data = CASchools)
plot(score~english, data = CASchools)

10 30 50

62
0

66
0

70
0

income

sc
or

e

0 20 40 60 80

62
0

66
0

70
0

english

sc
or

e

The option par(mfrow = c(1,2)) allows to display multiple plots side by side. Try what
happens if you replace c(1,2) with c(2,1).

14

1.4 Importing data

The internet serves as a vast repository for data in various formats, with csv (comma-separated
values), xlsx (Microsoft Excel spreadsheets), and txt (text files) being the most commonly
used.

R supports various functions for different data formats:

• read.csv() for reading comma-separated values
• read.csv2() for semicolon-separated values (adopting the German data convention of

using the comma as the decimal mark)
• read.table() for whitespace-separated files
• read_excel() for Microsoft Excel files (requires the readxl package)
• read_stata() for STATA files (requires the haven package)

Let’s import the CPS dataset from Bruce Hansen’s textbook. The Current Population Survey
(CPS) is a monthly survey conducted by the U.S. Census Bureau for the Bureau of Labor
Statistics, primarily used to measure the labor force status of the U.S. population.

• Dataset: cps09mar.txt
• Description: cps09mar_description.pdf

url = "https://users.ssc.wisc.edu/~bhansen/econometrics/cps09mar.txt"
varnames = c("age","female","hisp","education","earnings","hours",

"week","union","uncov","region","race","marital")
cps = read.table(url, col.names=varnames)

Let’s create further variables:

wage per hour
cps$wage = cps$earnings/(cps$week*cps$hours)
years since graduation
cps$experience = (cps$age - cps$education - 6)
married dummy
cps$married = cps$marital %in% c(1,2) |> as.numeric()
Black dummy
cps$Black = (cps$race %in% c(2,6,10,11,12,15,16,19)) |> as.numeric()
Asian dummy
cps$Asian = (cps$race %in% c(4,8,11,13,14,16,17,18,19)) |> as.numeric()

We will be using the cps data in the next sections, so it is a good idea to save the dataset to
your computer:

15

write.csv(cps, "cps.csv", row.names = FALSE)

To read the data back into R later, just type cps = read.csv("cps.csv").

1.5 R-codes

statistics-sec01.R

16

