
2 Sample distribution

In statistics, a univariate dataset 𝑌1, … , 𝑌𝑛 or a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 is often called
a sample because it typically represents observations selected from a larger population. The
sample distribution indicates how the sample values are distributed across possible out-
comes. Summary statistics, such as the sample mean and sample variance, provide a concise
representation of key characteristics of the sample distribution.

2.1 Empirical distribution function

The sample distribution of a univariate sample 𝑌1, … , 𝑌𝑛 is represented by the empirical
cumulative distribution function (ECDF), which shows the proportion of observations
in the sample that are less than or equal to a certain value 𝑎. There are two equivalent ways
to define the ECDF: using the indicator function and using order statistics.

Indicator function

The indicator function 𝐼(⋅) is defined as:

𝐼(𝑌𝑖 ≤ 𝑎) = {1 if 𝑌𝑖 ≤ 𝑎,
0 if 𝑌𝑖 > 𝑎.

The ECDF is defined as:
𝐹(𝑎) = 1

𝑛
𝑛

∑
𝑖=1

𝐼(𝑌𝑖 ≤ 𝑎).

This formula calculates the proportion of sample observations that are less than or equal to
the value 𝑎.

Order statistics

Equivalently, the ECDF can be defined using order statistics. Order statistics are the sample
data arranged in ascending order:

𝑌(1) ≤ 𝑌(2) ≤ … ≤ 𝑌(𝑛).
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In R, you can compute the order statistics of a univariate data vector Y using the command
sort(Y). The ECDF is then defined as:

𝐹(𝑎) =
⎧{
⎨{⎩

0 if 𝑎 < 𝑌(1),
𝑘
𝑛 if 𝑌(𝑘) ≤ 𝑎 < 𝑌(𝑘+1), 𝑘 = 1, 2, … , 𝑛 − 1,
1 if 𝑎 ≥ 𝑌(𝑛).

The ECDF is a step function that increases by 1/𝑛 at each data point 𝑌(𝑘). The function
remains constant between data points and jumps at each observed value in the sample.

Some ECDFs of the CPS data

cps = read.csv("cps.csv")
exper = cps$experience
wage = cps$wage
edu = cps$education
fem = cps$female

par(mfrow = c(2,2))
plot.ecdf(exper, main = "ECDF experience")
plot.ecdf(wage, main = "ECDF wage")
plot.ecdf(edu, main = "ECDF education")
plot.ecdf(fem, main = "ECDF female")
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A variable is discrete if it has a countable number of possible outcomes. It is continuous
if it can take any value within a range or continuum of possible outcomes. The ECDF is
always a step function with steps becoming arbitrarily small for continuous distributions as 𝑛
increases.

The plots show that edu and fem are discrete variables. The variable exper, although mea-
sured in years and technically discrete, has a large number of possible values, which makes it
effectively “almost” continuous. On the other hand, the variable wage is clearly continuous,
as it can take on a wide range of values.
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2.2 Histogram

Histograms offer a more intuitive visual representation of the sample distribution compared to
the ECDF. A histogram divides the data range into 𝐵 bins each of equal width ℎ and counts
the number of observations 𝑛𝑗 within each bin. The height of the histogram at 𝑎 in the 𝑗-th
bin is

̂𝑓(𝑎) = 𝑛𝑗
𝑛ℎ.

The histogram is the plot of these heights, displayed as rectangles, with their area normalized
so that the total area equals 1.

par(mfrow = c(2,2))
hist(exper, probability = TRUE)
hist(wage, probability = TRUE)
hist(edu, probability = TRUE)
hist(fem, probability = TRUE)
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Running hist(wage, probability=TRUE) automatically selects a suitable number of bins 𝐵.
Note that hist(wage) will plot absolute frequencies instead of relative ones. The shape of a
histogram depends on the choice of 𝐵. You can experiment with different values using the
breaks option:

par(mfrow = c(1,2))
hist(wage, probability = TRUE, breaks = 3)
hist(wage, probability = TRUE, breaks = 300)
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2.3 Empirical quantiles

Another way of characterizing the sample distribution is to use empirical quantiles.

Median

The median is a central value that splits the distribution into two equal parts. The empirical
median of a sorted dataset is found at the point where the ECDF reaches 0.5. For an even-sized
dataset, the median is the average of the two central observations:

𝑚𝑒𝑑 = {𝑌( 𝑛+1
2 ) if 𝑛 is odd

1
2(𝑌( 𝑛

2 ) + 𝑌( 𝑛
2 +1)) if 𝑛 is even

The median corresponds to the 0.5-quantile of the distribution.

Quantile

The empirical 𝑝-quantile ̂𝑞𝑝 is a value at which 𝑝 percent of the data falls below it. It is found
at the point where the ECDF reaches 𝑝.

Since the ECDF is flat between its jumps, the empirical 𝑝-quantile may not be unique. It can
be computed as the linear interpolation at ℎ = (𝑛 − 1)𝑝 + 1 between 𝑌(⌊ℎ⌋) and 𝑌(⌈ℎ⌉):

̂𝑞𝑝 = 𝑌(⌊ℎ⌋) + (ℎ − ⌊ℎ⌋)(𝑌(⌈ℎ⌉) − 𝑌(⌊ℎ⌋)).
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Note that ⌊ℎ⌋ and ⌈ℎ⌉ denotes rounding down and rounding up to the next integer. This
interpolation scheme is standard in R, although multiple approaches exist to define empirical
quantiles (see here).

To calculate the 0.05 quantile, the median and the 0.95 quantile of the data, we can use the
following command:

quantile(exper, probs = c(0.05, 0.5, 0.95))

5% 50% 95%
4 22 41

Let’s plot all quantiles as a function on a fine grid of probabilities between 0 and 1:

# Define a fine grid of probabilities
probs = seq(0, 1, by = 0.01)
# Compute the quantiles
q.exper = quantile(exper, probs)
q.wage = quantile(wage, probs)
q.edu = quantile(edu, probs)
q.fem = quantile(fem, probs)

par(mfrow = c(2,2))
plot(probs, q.exper, type="l")
plot(probs, q.wage, type="l")
plot(probs, q.edu, type="l")
plot(probs, q.fem, type="l")
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Check that these are indeed the correct quantiles using the ECDF plots from above.

2.4 Empirical moments

Many stylized features and characteristics of a sample distribution can be computed from
sample moments.

2.4.1 Sample moments

The 𝑟-th sample moment about the origin (also called the raw moment) is defined as

𝑌 𝑟 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑟
𝑖 .
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For example, the first sample moment (𝑟 = 1) is the sample mean (arithmetic mean):

𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖.

The sample mean is the most common measure of central tendency.

To compute the sample mean of a vector Y in R, use mean(Y) or alternatively sum(Y)/length(Y).
The r-th sample moment can be calculated with mean(Y^r).

2.4.2 Central sample moments

The 𝑟-th central sample moment is the average of the 𝑟-th powers of the deviations from
the sample mean:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )𝑟

For example, the second central moment (𝑟 = 2) is the sample variance:

�̂�2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 𝑌 2 − 𝑌 2.

The sample variance measures the spread or dispersion of the data around the sample mean.

The sample standard deviation, the square root of the sample variance:

�̂�𝑌 = √�̂�2
𝑌 = √ 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = √𝑌 2 − 𝑌 2

It quantifies the typical deviation of data points from the sample mean in the original units of
measurement.

2.4.3 Degree of freedom corrections

When computing the sample mean 𝑌 , we have 𝑛 degrees of freedom because each data point
𝑌𝑖 can vary freely. However, when calculating the deviations (𝑌𝑖 − 𝑌 ), these deviations are
subject to the constraint:

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 ) = 0.

This means that the deviations are not all free to vary; they are connected by this equation.
Knowing the first 𝑛 − 1 of the deviations determines the last one:

(𝑌𝑛 − 𝑌 ) = −
𝑛−1
∑
𝑖=1

(𝑌𝑖 − 𝑌 ).
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Therefore, only 𝑛 − 1 deviations can vary freely, which results in 𝑛 − 1 degrees of freedom for
the sample variance.

Because ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 effectively contains only 𝑛 − 1 freely varying summands, it is common

to account for this fact. The adjusted sample variance uses 𝑛 − 1 in the denominator:

𝑠2
𝑌 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

The adjusted sample variance relates to the unadjusted sample variance as:

𝑠2
𝑌 = 𝑛

𝑛 − 1�̂�2
𝑌 .

The adjusted sample standard deviation is:

𝑠𝑌 = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = √ 𝑛
𝑛 − 1�̂�𝑌 .

To compute the sample variance and sample standard deviaion of a vector Y in R, use
mean(Y^2)-mean(Y)^2 and sqrt(mean(Y^2)-mean(Y)^2), respectively. The built-in
functions var(Y) and sd(Y) compute their adjusted versions.

2.4.4 Standardized sample moments

The r-th standardized sample moment is the central moment normalized by the sample
standard deviation raised to the power of 𝑟. It is defined as:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌
�̂�𝑌

)
𝑟

Skewness

For example, the third standardized sample moment (𝑟 = 3) is the sample skewness:

𝑠𝑘𝑒𝑤 = 1
𝑛�̂�3

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )3.

The skewness is a measure of asymmetry around the mean. A non-zero skewness indicates an
asymmetric distribution, with positive values indicating a right tail and negative values a left
tail.
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To compute the sample skewness in R, use:

mean((Y-mean(Y))^3)/(mean(Y^2)-mean(Y)^2)^(3/2)

For convenience, you can use the skewness(Y) function from the moments package, which
performs the same calculation.

library(moments)
c(skewness(exper), skewness(wage), skewness(edu), skewness(fem))

[1] 0.1862605 4.3201570 -0.2253251 0.3004446

Wages are right-skewed because a few very rich individuals earn much more than the many
with low to medium incomes. The other variables do not indicate any pronounced skewness.

Kurtosis

The sample kurtosis is the fourth standardized sample moment (𝑟 = 4):

𝑘𝑢𝑟𝑡 = 1
𝑛�̂�4

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )4.

Kurtosis measures the “tailedness” or heaviness of the tails of a distribution and can indicate
the presence of extreme outliers. The reference value is 3, which corresponds to the kurtosis
of a normal distribution (we will discuss this later in detail). Values greater than 3 suggest
heavier tails, while values less than 3 indicate lighter tails.

To compute the sample kurtosis in R, use:
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mean((Y-mean(Y))^4)/(mean((Y-mean(Y))^2))^2

For convenience, you can use the kurtosis(Y) function from the moments package, which
performs the same calculation.

c(kurtosis(exper), kurtosis(wage), kurtosis(edu), kurtosis(fem))

[1] 2.374758 30.370331 4.498264 1.090267

The variable wage exhibits heavy tails due to a few super-rich outliers in the sample. In
contrast, fem has light tails because there are approximately equal numbers of women and
men.

The plots display histograms of two standardized datasets (both have a sample mean of 0 and
a sample variance of 1). The left dataset has a normal sample kurtosis (around 3), while the
right dataset has a high sample kurtosis with heavier tails.

The plot shows histrograms of two standardized univariate datasets (i.e., their sample mean
is 0 and their sample variance is 1). The dataset from the left plot has a normal sample
kurtosis (around 3) and the dataset from the right plot has a high sample kurtosis with more
obervarions in the tails.

Right-skewed, heavy-tailed variables are common in real-world datasets, such as income levels,
wealth accumulation, property values, insurance claims, and social media follower counts. A
common transformation to reduce skewness and kurtosis in data is to use the natural loga-
rithm:

par(mfrow = c(1,2))
hist(wage, probability = TRUE)
hist(log(wage), probability = TRUE, xlim = c(-3, 6))
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c(skewness(log(wage)), kurtosis(log(wage)))

[1] -0.6990539 11.8566367

In econometrics, statistics, and many programming languages including R, log(⋅) is commonly
used to denote the natural logarithm.

2.5 Sample covariance

Consider a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛, such as the following subset of the cps dataset:

dat = data.frame(wage, edu, fem)

Sample mean vector

The sample mean vector 𝑋𝑋𝑋 contains the sample means of the 𝑘 variables and is defined as

𝑋𝑋𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖.

29



colMeans(dat)

wage edu fem
23.9026619 13.9246187 0.4257223

Sample covariance matrix

The sample covariance matrix Σ̂ is the 𝑘 × 𝑘 matrix given by

Σ̂ = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′.

Its elements �̂�ℎ,𝑙 represent the pairwise sample covariance between variables ℎ and 𝑙:

�̂�ℎ,𝑙 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙), 𝑋ℎ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖ℎ.

The adjusted sample covariance matrix 𝑆 is defined as

𝑆 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′

Its elements 𝑠ℎ,𝑙 are the adjusted sample covariances, with main diagonal elements 𝑠2
ℎ =

𝑠ℎ,ℎ being the adjusted sample variances:

𝑠ℎ,𝑙 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙).

cov(dat)

wage edu fem
wage 428.948332 21.82614057 -1.66314777
edu 21.826141 7.53198925 0.06037303
fem -1.663148 0.06037303 0.24448764

30



Sample correlation matrix

The sample correlation coefficient between the variables ℎ and 𝑙 is the standardized sample
covariance:

𝑐ℎ,𝑙 = 𝑠ℎ,𝑙
𝑠ℎ𝑠𝑙

= ∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙)

√∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋ℎ)2√∑𝑛

𝑖=1(𝑋𝑖𝑙 − 𝑋𝑙)2
= �̂�ℎ,𝑙

�̂�ℎ�̂�𝑙
.

These coefficients form the sample correlation matrix 𝐶, expressed as:

𝐶 = 𝐷−1𝑆𝐷−1,
where 𝐷 is the diagonal matrix of adjusted sample standard deviations:

𝐷 = 𝑑𝑖𝑎𝑔(𝑠1, … , 𝑠𝑘) =
⎛⎜⎜⎜⎜
⎝

𝑠1 0 … 0
0 𝑠2 … 0
⋮ ⋱ ⋮
0 0 … 𝑠𝑘

⎞⎟⎟⎟⎟
⎠

The matrices Σ̂, 𝑆, and 𝐶 are symmetric.

cor(dat)

wage edu fem
wage 1.0000000 0.38398973 -0.16240519
edu 0.3839897 1.00000000 0.04448972
fem -0.1624052 0.04448972 1.00000000

We find a strong positive correlation between wage and edu, a substantial negative correlation
between wage and fem, and a negligible correlation between edu and fem.

2.6 R-codes

statistics-sec02.R
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