
3 Least squares

3.1 Regression function

The idea of regression analysis is to approximate a univariate dependent variable 𝑌𝑖 (also
known as the regressand or response variable) as a function of the 𝑘-variate vector of the
independent variables 𝑋𝑋𝑋𝑖 (also known as regressors or predictor variables). The relationship
is formulated as

𝑌𝑖 ≈ 𝑓(𝑋𝑋𝑋𝑖), 𝑖 = 1, … , 𝑛,
where 𝑌1, … , 𝑌𝑛 is a univariate dataset for the dependent variable and 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 a 𝑘-variate
dataset for the regressor variables.

The goal of the least squares method is to find the regression function that minimizes the
squared difference between actual and fitted values of 𝑌𝑖:

min
𝑓(⋅)

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2.

If the regression function 𝑓(𝑋𝑋𝑋𝑖) is linear in 𝑋𝑋𝑋𝑖, i.e.,

𝑓(𝑋𝑋𝑋𝑖) = 𝑏1 + 𝑏2𝑋𝑖2 + … + 𝑏𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏, 𝑏𝑏𝑏 ∈ ℝ𝑘,

the minimization problem is known as the ordinary least squares (OLS) problem. The
coefficient vector has 𝑘 entries:

𝑏𝑏𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑘)′.
To avoid the unrealistic constraint of the regression line passing through the origin, a constant
term (intercept) is always included in 𝑋𝑋𝑋𝑖, typically as the first regressor:

𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′.

Despite its linear framework, linear regressions can be quite adaptable to nonlinear relation-
ships by incorporating nonlinear transformations of the original regressors. Examples include
polynomial terms (e.g., squared, cubic), interaction terms (combining continuous and categor-
ical variables), and logarithmic transformations.
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3.2 Ordinary least squares (OLS)

The sum of squared errors for a given coefficient vector 𝑏𝑏𝑏 ∈ ℝ𝑘 is defined as

𝑆𝑛(𝑏𝑏𝑏) =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2 =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

It is minimized by the least squares coefficient vector

̂𝛽𝛽𝛽 = argmin𝑏𝑏𝑏∈ℝ𝑘

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

Least squares coefficients

If the 𝑘 × 𝑘 matrix (∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) is invertible, the solution for the ordinary least squares
problem is uniquely determined by

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖.

The fitted values or predicted values are

𝑌𝑖 = ̂𝛽1 + ̂𝛽2𝑋𝑖2 + … + ̂𝛽𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

The residuals are the difference between observed and fitted values:

�̂�𝑖 = 𝑌𝑖 − 𝑌𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

3.3 Simple linear regression (k=2)

A simple linear regression is a linear regression of a dependent variable 𝑌 on a constant and
a single independent variable 𝑍. I.e., we are interested in a regression function of the form

𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏 = 𝑏1 + 𝑏2𝑍𝑖.

The regressor vector is 𝑋𝑋𝑋𝑖 = (1, 𝑍𝑖)′. Let’s consider 𝑌 = log(wage) and 𝑍 = education from
the following dataset with 𝑛 = 20 observations:
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Person log(Wage) Education Education^2 Edu x log(Wage)
1 2.56 18 324 46.08
2 2.44 14 196 34.16
3 2.32 14 196 32.48
4 2.44 16 256 39.04
5 2.22 16 256 35.52
6 2.7 14 196 37.8
7 2.46 16 256 39.36
8 2.71 16 256 43.36
9 3.18 18 324 57.24
10 2.15 12 144 25.8
11 3.24 18 324 58.32
12 2.76 14 196 38.64
13 1.64 12 144 19.68
14 3.36 21 441 70.56
15 1.86 14 196 26.04
16 2.56 12 144 30.72
17 2.22 13 169 28.86
18 2.61 21 441 54.81
19 2.54 12 144 30.48
20 2.9 21 441 60.9

sum 50.87 312 5044 809.85

The OLS coefficients are

(
̂𝛽1
̂𝛽2
) = (

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖

= ( 𝑛 ∑𝑛
𝑖=1 𝑍𝑖

∑𝑛
𝑖=1 𝑍𝑖 ∑𝑛

𝑖=1 𝑍2
𝑖
)

−1
( ∑𝑛

𝑖=1 𝑌𝑖
∑𝑛

𝑖=1 𝑍𝑖𝑌𝑖
)

Evaluate sums:
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖 = ( 50.87
809.85) ,

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖 = ( 20 312

312 5044)

OLS coefficients:

̂𝛽𝛽𝛽 = (
̂𝛽1
̂𝛽2
) = ( 20 312

312 5044)
−1

( 50.87
809.85) = (1.107

0.092)
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The fitted regression line is
1.107 + 0.092 education

There is another, simpler formula for ̂𝛽1 and ̂𝛽2 in the simple linear regression. It can be
expressed in terms of sample means and covariances:

Simple linear regression

The least squares coefficients in a simple linear regression can be written as

̂𝛽2 = �̂�𝑌 𝑍
�̂�2

𝑍
, ̂𝛽1 = 𝑌 − ̂𝛽2𝑍, (3.1)

where �̂�𝑌 𝑍 is the sample covariance between 𝑌 and 𝑍, and �̂�2
𝑍 is the sample variance of 𝑍.

3.4 Regression plots

Let’s examine the linear relationship between average test scores and the student-teacher
ratio:

data(CASchools, package = "AER")
STR = CASchools$students/CASchools$teachers
score = (CASchools$read+CASchools$math)/2
fit1 = lm(score ~ STR)
fit1$coefficients

(Intercept) STR
698.932949 -2.279808

The fitted regression line is
698.9 − 2.28 STR.

We can plot the regression line over a scatter plot of the data:

par(mfrow = c(1,2), cex=0.8)
plot(score~STR)
abline(fit1, col="blue")
plot(STR, residuals(fit1))
abline(0,0,col="blue")
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Let’s include the percentage of english learners as an additional regressor:

english = CASchools$english
fit2= lm(score ~ STR + english)
fit2$coefficients

(Intercept) STR english
686.0322445 -1.1012956 -0.6497768

A 3D plot provides a visual representation of the resulting regression line (surface):

OLS Regression Surface
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Adding the additional predictor income gives a regression specification with dimensions beyond
visual representation:
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income = CASchools$income
fit3 = lm(score ~ STR + english + income)
fit3$coefficients

(Intercept) STR english income
640.31549821 -0.06877542 -0.48826683 1.49451661

The fitted regression line now includes three predictors and four coefficients:

640.3 − 0.07 STR − 0.49 english + 1.49 income

For specifications with multiple regressors, fitted values and residuals can still be visualized:

par(mfrow = c(1,2), cex=0.8)
plot(fit3$fitted.values)
plot(fit3$residuals)
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The pattern of fitted values arises because the observations in the CASchools dataset are sorted
in ascending order by test score.

3.5 Matrix notation

Matrix notation is convenient because it eliminates the need for summation symbols and
indices. We define the response vector 𝑌𝑌𝑌 and the regressor matrix (design matrix) 𝑋𝑋𝑋 as
follows:

𝑌𝑌𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑌1
𝑌2
⋮

𝑌𝑛

⎞⎟⎟⎟⎟
⎠

, 𝑋𝑋𝑋 =
⎛⎜⎜⎜⎜
⎝

𝑋𝑋𝑋′
1

𝑋𝑋𝑋′
2

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

1 𝑋12 … 𝑋1𝑘
⋮ ⋮
1 𝑋𝑛2 … 𝑋𝑛𝑘

⎞⎟
⎠

37



Note that ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖 = 𝑋𝑋𝑋′𝑋𝑋𝑋 and ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑌𝑖 = 𝑋𝑋𝑋′𝑌𝑌𝑌 .

The least squares coefficient vector becomes

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

The vector of fitted values can be computed as follows:

𝑌𝑌𝑌 = ⎛⎜⎜
⎝

𝑌1
⋮

𝑌𝑛

⎞⎟⎟
⎠

= 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′⏟⏟⏟⏟⏟⏟⏟
=𝑃𝑃𝑃

𝑌𝑌𝑌 = 𝑃𝑃𝑃𝑌𝑌𝑌 .

The projection matrix 𝑃𝑃𝑃 is also known as the influence matrix or hat matrix and maps
observed values to fitted values.

The vector of residuals is given by

̂𝑢𝑢𝑢 = ⎛⎜
⎝

�̂�1
⋮

�̂�𝑛

⎞⎟
⎠

= 𝑌𝑌𝑌 − 𝑌𝑌𝑌 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑌𝑌𝑌 .

The diagonal entries of 𝑃𝑃𝑃 , given by

ℎ𝑖𝑖 = 𝑋𝑋𝑋′
𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖,

are called leverage values or hat values and measure how far away the regressor values of
the 𝑖-th observation 𝑋𝑖 are from those of the other observations.

Properties of leverage values:

0 ≤ ℎ𝑖𝑖 ≤ 1,
𝑛

∑
𝑖=1

ℎ𝑖𝑖 = 𝑘.

A large ℎ𝑖𝑖 occurs when the observation 𝑖 has a big influence on the regression line, e.g., the
last observation in the following dataset:

X=c(10,20,30,40,50,60,70,500)
Y=c(1000,2200,2300,4200,4900,5500,7500,10000)
plot(X,Y, main="OLS regression line with and without last observation")
abline(lm(Y~X), col="blue")
abline(lm(Y[1:7]~X[1:7]), col="red")
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hatvalues(lm(Y~X))

1 2 3 4 5 6 7 8
0.1657356 0.1569566 0.1492418 0.1425911 0.1370045 0.1324820 0.1290237 0.9869646

3.6 R-squared

Consider the following sample variances:

Dependent variable �̂�2
𝑌 = 1

𝑛 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

Fitted values �̂�2
𝑌 = 1

𝑛 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

Residuals �̂�2
�̂� = 1

𝑛 ∑𝑛
𝑖=1 �̂�2

𝑖

An important property of the residual vector is that it is orthogonal to the columns of 𝑋𝑋𝑋, i.e.

𝑋𝑋𝑋′ ̂𝑢𝑢𝑢 =
⎛⎜⎜⎜⎜
⎝

∑𝑛
𝑖=1 �̂�𝑖

∑𝑛
𝑖=1 𝑋𝑖2�̂�𝑖

⋮
∑𝑛

𝑖=1 𝑋𝑖𝑘�̂�𝑖

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0
0
⋮
0

⎞⎟⎟⎟⎟
⎠

. (3.2)

In particular, the sample mean of the residuals is zero, which is why it does not appear in the
residual sample variance �̂�2

�̂�.
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Moreover, the following relationship holds (analysis of variance formula):

�̂�2
𝑌 = �̂�2

𝑌 + �̂�2
�̂�.

Hence, the larger the proportion of the explained sample variance, the better the fit of the
OLS regression. This motivates the definition of the R-squared coefficient:

𝑅2 = 1 − �̂�2
�̂�

�̂�2
𝑌

= 1 − ∑𝑛
𝑖=1 �̂�2

𝑖
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2 = ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 .

The R-squared describes the proportion of sample variation in 𝑌𝑌𝑌 explained by 𝑌𝑌𝑌 . We have
0 ≤ 𝑅2 ≤ 1.

In a regression of 𝑌𝑖 on a single regressor 𝑍𝑖 with intercept (simple linear regression), the
R-squared is equal to the squared sample correlation coefficient of 𝑌𝑖 and 𝑍𝑖.

An R-squared of 0 indicates no sample variation in 𝑌𝑌𝑌 (a flat regression line/surface), whereas
a value of 1 indicates no variation in ̂𝑢𝑢𝑢, indicating a perfect fit. The higher the R-squared, the
better the OLS regression fits the data.

However, a low R-squared does not necessarily mean the regression specification is bad. It
just implies that there is a high share of unobserved heterogeneity in 𝑌𝑌𝑌 that is not captured
by the regressors 𝑋𝑋𝑋 linearly.

Conversely, a high R-squared does not necessarily mean a good regression specification. It
just means that the regression fits the sample well. Too many unnecessary regressors lead to
overfitting.

If 𝑘 = 𝑛, we have 𝑅2 = 1 even if none of the regressors has an actual influence on the dependent
variable.

3.7 Adjusted R-squared

Recall that the deviations (𝑌𝑖−𝑌 ) cannot vary freely because they are subject to the constraint
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 ), which is why we loose 1 degree of freedom in the sample variance of 𝑌𝑌𝑌 .

For the sample variance of ̂𝑢𝑢𝑢, we loose 𝑘 degrees of freedom because the residuals are subject to
the constraints from Equation 3.2. The adjusted sample variance of the residuals is therefore
defined as:

𝑠2
�̂� = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

�̂�2
𝑖 .
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By incorporating adjusted versions in the R-squared definition, we penalize regression specifi-
cations with large 𝑘. The adjusted R-squared is

𝑅2 = 1 −
1

𝑛−𝑘 ∑𝑛
𝑖=1 �̂�2

𝑖
1

𝑛−1 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 = 1 − 𝑠2

�̂�
𝑠2

𝑌
.

The squareroot of the adjusted sample variance of the residuals is called the standard error
of the regression (SER) or residual standard error:

𝑆𝐸𝑅 ∶= 𝑠�̂� = √ 1
𝑛 − 𝑘

𝑛
∑
𝑖=1

�̂�2
𝑖 .

The R-squared should be used for interpreting the share of variation explained by the fitted
regression line. The adjusted R-squared should be used for comparing different OLS regression
specifications.

The commands summary(fit)$r.squared and summary(fit)$adj.r.squared return the
R-squared and adjusted R-squared values, respectively. The 𝑆𝐸𝑅 can be returned by
summary(fit)$sigma.

The stargazer() function can be used to produce nice regression outputs:

library(stargazer)

stargazer(fit1, fit2, fit3, type="latex", report="vc*", omit.stat = "f",
star.cutoffs = NA, df=FALSE, omit.table.layout = "n",
digits = 4, header = FALSE)

3.8 Too many regressors

OLS should be considered for regression problems with 𝑘 << 𝑛 (small 𝑘 and large 𝑛). When
the number of predictors 𝑘 approaches or equals the number of observations 𝑛, we run into the
problem of overfitting. Specifically, at 𝑘 = 𝑛, the regression line will perfectly fit the data.
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Table 3.2

Dependent variable:
score

(1) (2) (3)
STR −2.2798 −1.1013 −0.0688

english −0.6498 −0.4883

income 1.4945

Constant 698.9329 686.0322 640.3155

Observations 420 420 420
R2 0.0512 0.4264 0.7072
Adjusted R2 0.0490 0.4237 0.7051
Residual Std. Error 18.5810 14.4645 10.3474
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If 𝑘 = 𝑛 ≥ 4, we can no longer visualize the OLS regression line, but the problem of a perfect
fit is still present. If 𝑘 > 𝑛, there exists no OLS solution because 𝑋𝑋𝑋′𝑋𝑋𝑋 is not invertible.
Regression problems with 𝑘 ≈ 𝑛 or 𝑘 > 𝑛 are called high-dimensional regressions.

42



3.9 Perfect multicollinearity

The only requirement for computing the OLS coefficients is the invertibility of the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋.
As discussed above, a necessary condition is that 𝑘 ≤ 𝑛.

Another reason the matrix may not be invertible is if two or more regressors are perfectly
collinear. Two variables are perfectly collinear if their sample correlation is 1 or -1. Multi-
collinearity arises if one variable is a linear combination of the other variables.

Common causes are duplicating a regressor or using the same variable in different units (e.g.,
GDP in both EUR and USD).

Perfect multicollinearity (or strict multicollinearity) arises if the regressor matrix does not
have full column rank: rank(𝑋𝑋𝑋) < 𝑘. It implies rank(𝑋𝑋𝑋′𝑋𝑋𝑋) < 𝑘, so that the matrix is singular
and ̂𝛽𝛽𝛽 cannot be computed.

Near multicollinearity occurs when two columns of 𝑋𝑋𝑋 have a sample correlation very close
to 1 or -1. Then, (𝑋𝑋𝑋′𝑋𝑋𝑋) is “near singular”, its eigenvalues are very small, and (𝑋𝑋𝑋′𝑋𝑋𝑋)−1

becomes very large, causing numerical problems.

Multicollinearity means that at least one regressor is redundant and can be dropped.

3.10 Dummy variable trap

A common cause of strict multicollinearity is the inclusion of too many dummy variables. Let’s
consider the cps data and add a dummy variable for non-married individuals:

cps = read.csv("cps.csv")
cps$nonmarried = 1-cps$married
fit4 = lm(wage ~ married + nonmarried, data = cps)
fit4$coefficients

(Intercept) married nonmarried
19.338695 6.997155 NA

The coefficient for nonmarried is NA. We fell into the dummy variable trap!

The dummy variables married and nonmarried are collinear with the intercept variable be-
cause 𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + 𝑛𝑜𝑛𝑚𝑎𝑟𝑟𝑖𝑒𝑑 = 1, which leads to a singular matrix 𝑋𝑋𝑋′𝑋𝑋𝑋.

The solution is to use one dummy variable less than factor levels, as R automatically does by
omitting the last dummy variable. Another solution would be to remove the intercept from
the model, which can be done by adding -1 to the model formula:
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fit5 = lm(wage ~ married + nonmarried - 1, data = cps)
fit5$coefficients

married nonmarried
26.33585 19.33869

3.11 R-codes

statistics-sec03.R
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