
4 Probability

4.1 Random sampling

From the perspective of empirical analysis, a dataset 𝑌1, … , 𝑌𝑛 or 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 is simply an
array of fixed numbers presented to a researcher. The summary statistics we compute –
such as sample means, sample correlations, and OLS coefficients – are functions of this given
dataset.

While these statistics provide a snapshot of the data at hand, they do not automatically offer
insights into the broader world from which the data originated. To add deeper meaning to
these numbers and draw conclusions about underlying dependencies and causalities, we need
to consider how the data were obtained.

In statistical theory, a dataset is viewed as the result of a random experiment. The gender
of the next person you meet, daily fluctuations in stock prices, monthly music streams of your
favorite artist, or the annual number of pizzas consumed – all involve a certain amount of
randomness.

Sampling refers to the process of obtaining data by drawing observations from a population,
which is often considered infinite in statistical theory. An infinite population is a theoretical
construct, representing not just the existing physical population but all possible future or
hypothetical individuals.

Figure 4.1: Sampling illustration
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This figure demonstrates the concept of sampling. The left side displays the full set of letters
from “a” to “z”, representing the entire (infinite) population. From this population, five letters
are randomly chosen, forming the sample shown on the right side.

The goal of statistical inference is to learn about the underlying population distribution by
analyzing the observed sample. To do so, we need to make assumptions about how the data
were sampled.

The simplest and ideal case is random sampling, where observations are randomly drawn
from this infinite distribution with replacement – like randomly drawing balls from an urn,
or randomly selecting individuals for a representative survey. This principle is also known as
i.i.d. sampling (independent and identically distributed sampling). To define these concepts
rigorously, we require probability theory.

4.2 Random variables

A random variable is a numerical summary of a random experiment. An outcome is a
specific result of a random experiment. The sample space 𝑆 is the set/collection of all
potential outcomes.

Let’s consider some examples:

• Coin toss: The outcome of a coin toss can be “heads” or “tails”. This random experiment
has a two-element sample space: 𝑆 = {ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠}. We can express the experiment as
a binary random variable:

𝑌 = {1 if outcome is heads,
0 if outcome is tails.

• Gender: If you conduct a survey and interview a random person to ask them about their
gender, the answer may be “female”, “male”, or “diverse”. It is a random experiment
since the person to be interviewed is selected randomly. The sample space has three
elements: 𝑆 = {𝑓𝑒𝑚𝑎𝑙𝑒, 𝑚𝑎𝑙𝑒, 𝑑𝑖𝑣𝑒𝑟𝑠𝑒}. To focus on female vs. non-female, we can
define the female dummy variable:

𝑌 = {1 if the person is female,
0 if the person is not female.

Similarly, dummy variables for male and diverse can be defined.
• Education level: If you ask a random person about their education level according to the

ISCED-2011 framework, the outcome may be one of the eight ISCED-2011 levels. We
have an eight-element sample space:

𝑆 = {𝐿𝑒𝑣𝑒𝑙 1, 𝐿𝑒𝑣𝑒𝑙 2, 𝐿𝑒𝑣𝑒𝑙 3, 𝐿𝑒𝑣𝑒𝑙 4, 𝐿𝑒𝑣𝑒𝑙 5, 𝐿𝑒𝑣𝑒𝑙 6, 𝐿𝑒𝑣𝑒𝑙 7, 𝐿𝑒𝑣𝑒𝑙 8}.
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Table 4.1: ISCED 2011 levels

[H]
ISCED level Education level Years of schooling

1 Primary 4
2 Lower Secondary 10
3 Upper secondary 12
4 Post-Secondary 13
5 Short-Cycle Tertiary 14
6 Bachelor’s 16
7 Master’s 18
8 Doctoral 21

The eight-element sample space of the education-level random experiment provides a
natural ordering. We define the random variable education as the number of years of
schooling of the interviewed person:

𝑌 = number of years of schooling ∈ {4, 10, 12, 13, 14, 16, 18, 21}.

• Wage: If you ask a random person about their income per working hour in EUR, there
are infinitely many potential answers. Any (non-negative) real number may be an out-
come. The sample space is a continuum of different wage levels. The wage level of the
interviewed is already numerical. The random variable is

𝑌 = income per working hour in EUR.

These random variables have in common that they take values on the real line ℝ but their out-
come is uncertain before conducting the random experiment (i.e. flipping the coin or selecting
a random person to be interviewed).

4.3 Events and probabilities

An event of a random variable 𝑌 is a specific subset of the real line. Any real number defines
an event (elementary event), and any open, half-open, or closed interval represents an event
as well.

Let’s define some specific events:

• Elementary events:

𝐴1 = {𝑌 = 0}, 𝐴2 = {𝑌 = 1}, 𝐴3 = {𝑌 = 2.5}
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• Half-open events:

𝐴4 = {𝑌 ≥ 0} = {𝑌 ∈ [0, ∞)}
𝐴5 = {−1 ≤ 𝑌 < 1} = {𝑌 ∈ [−1, 1)}.

The probability function 𝑃 assigns values between 0 and 1 to events. It is natural to assign
the following probabilities for a fair coin toss:

𝑃(𝐴1) = 𝑃(𝑌 = 0) = 0.5, 𝑃 (𝐴2) = 𝑃(𝑌 = 1) = 0.5

By definition, the coin variable will never take the value 2.5, so we assign

𝑃(𝐴3) = 𝑃(𝑌 = 2.5) = 0.

For each intervals, we check whether the events {𝑌 = 0} and/or {𝑌 = 1} are subsets of the
event of interest. If both {𝑌 = 0} and {𝑌 = 1} are contained in the event, the probability is 1.
If only one of them is contained, the probability is 0.5. If neither is contained, the probability
is 0.

𝑃(𝐴4) = 𝑃(𝑌 ≥ 0) = 1, 𝑃 (𝐴5) = 𝑃(−1 ≤ 𝑌 < 1) = 0.5.

Every event has a complementary event, and for any pair of events we can take the union
and intersection. Let’s define further events:

• Complements:

𝐴6 = 𝐴𝑐
4 = {𝑌 ≥ 0}𝑐 = {𝑌 < 0} = {𝑌 ∈ (−∞, 0)},

• Unions:
𝐴7 = 𝐴1 ∪ 𝐴6 = {𝑌 = 0} ∪ {𝑌 < 0} = {𝑌 ≤ 0}

• Intersections:

𝐴8 = 𝐴4 ∩ 𝐴5 = {𝑌 ≥ 0} ∩ {−1 ≤ 𝑌 < 1} = {0 ≤ 𝑌 < 1}

• Iterations of it:

𝐴9 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴5 ∪ 𝐴6 ∪ 𝐴7 ∪ 𝐴8 = {𝑌 ∈ (−∞, 1] ∪ {2.5}},

• Certain event:
𝐴10 = 𝐴9 ∪ 𝐴𝑐

9 = {𝑌 ∈ (−∞, ∞)} = {𝑌 ∈ ℝ}
• Empty event:

𝐴11 = 𝐴𝑐
10 = {𝑌 ∉ ℝ} = {}

You may verify that 𝑃 (𝐴1) = 0.5, 𝑃(𝐴2) = 0.5, 𝑃(𝐴3) = 0, 𝑃(𝐴4) = 1 𝑃(𝐴5) = 0.5,
𝑃(𝐴6) = 0, 𝑃(𝐴7) = 0.5, 𝑃(𝐴8) = 0.5, 𝑃(𝐴9) = 1, 𝑃(𝐴10) = 1, 𝑃(𝐴11) = 0 for the coin toss
experiment. If you take the variables education or wage, the probabilities of these events will
be completely different.
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4.4 Probability function

The Borel sigma algebra ℬ is the collection of all events to which we assign probabilities.
The events 𝐴1, … , 𝐴11 mentioned earlier are elements of ℬ. Any event of the form {𝑌 ∈
(𝑎, 𝑏)}, where 𝑎, 𝑏 ∈ ℝ, is also an element of ℬ. Furthermore, all possible unions, intersections,
and complements of these events are contained in ℬ. In essence, ℬ can be thought of as
the comprehensive collection of all events for which we would ever compute probabilities in
practice.

The following mathematical axioms ensure that the concept of probability is well-defined and
possesses the desired properties:

Probability function

A probability function 𝑃 is a function 𝑃 ∶ ℬ → [0, 1] that satisfies the Axioms of Probabil-
ity:

1. 𝑃(𝐴) ≥ 0 for every 𝐴 ∈ ℬ
2. 𝑃(𝑌 ∈ ℝ) = 1
3. If 𝐴1, 𝐴2, 𝐴3 … are disjoint then

𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ … = 𝑃(𝐴1) + 𝑃(𝐴2) + 𝑃(𝐴3) + …

Two events 𝐴 and 𝐵 are disjoint if 𝐴 ∩ 𝐵 = {}, i.e., if they have no outcomes in common.
For instance, 𝐴1 = {𝑌 = 0} and 𝐴2 = {𝑌 = 1} are disjoint, but 𝐴1 and 𝐴4 = {𝑌 ≥ 0} are
not disjoint, since 𝐴1 ∩ 𝐴4 = {𝑌 = 0} is nonempty.

The axioms of probability imply the following rules of calculation:

Basic rules of probability

• 0 ≤ 𝑃 (𝐴) ≤ 1 for any event 𝐴
• 𝑃(𝐴) ≤ 𝑃(𝐵) if 𝐴 is a subset of 𝐵
• 𝑃(𝐴𝑐) = 1 − 𝑃(𝐴) for the complement event of 𝐴
• 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) for any events 𝐴, 𝐵
• 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) if 𝐴 and 𝐵 are disjoint
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4.5 Distribution function

Assigning probabilities to events is straightforward for binary variables, like coin tosses. For
instance, knowing that 𝑃(𝑌 = 1) = 0.5 allows us to derive the probabilities for all events in ℬ.
However, for more complex variables, such as education or wage, defining probabilities for all
possible events becomes more challenging due to the vast number of potential set operations
involved.

Fortunately, it turns out that knowing the probabilities of events of the form {𝑌 ≤ 𝑎} is
enough to determine the probabilities of all other events. These probabilities are summarized
in the cumulative distribution function.

Cumulative distribution function (CDF)

The cumulative distribution function (CDF) of a random variable 𝑌 is

𝐹(𝑎) ∶= 𝑃(𝑌 ≤ 𝑎), 𝑎 ∈ ℝ.

The CDF is sometimes referred to as the distribution function, or simply the distribution.
The distribution defines the probabilities for all possible events in ℬ.

The CDF of the variable coin is

𝐹(𝑎) =
⎧{
⎨{⎩

0 𝑎 < 0,
0.5 0 ≤ 𝑎 < 1,
1 𝑎 ≥ 1,

with the following CDF plot:

Figure 4.2: CDF of coin
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Figure 4.3: CDF of education

The CDF of the variable education may be

and the CDF of the variable wage may have the following form:

Figure 4.4: CDF of wage

By the basic rules of probability, we can compute the probability of any event of interest if we
know the probabilities of all events of the forms {𝑌 ≤ 𝑎} and {𝑌 = 𝑎}.

Some basic rules for the CDF (for 𝑎 < 𝑏):

• 𝑃(𝑌 ≤ 𝑎) = 𝐹(𝑎)
• 𝑃(𝑌 > 𝑎) = 1 − 𝐹(𝑎)
• 𝑃(𝑌 < 𝑎) = 𝐹(𝑎) − 𝑃(𝑌 = 𝑎)
• 𝑃(𝑌 ≥ 𝑎) = 1 − 𝑃(𝑌 < 𝑎)
• 𝑃(𝑎 < 𝑌 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎)
• 𝑃(𝑎 < 𝑌 < 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) − 𝑃(𝑌 = 𝑏)
• 𝑃(𝑎 ≤ 𝑌 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) + 𝑃(𝑌 = 𝑎)
• 𝑃(𝑎 ≤ 𝑌 < 𝑏) = 𝑃 (𝑎 ≤ 𝑌 ≤ 𝑏) − 𝑃(𝑌 = 𝑏)
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A probability of the form 𝑃(𝑌 = 𝑎), which involves only an elementary event, is called a point
probability.

4.6 Point probabilities

The CDF of a continuous random variable is smooth, while the CDF of a discrete random
variable contains jumps and is flat between jumps. For example, variables like coin and
education are discrete, whereas wage is continuous.

The point probability 𝑃(𝑌 = 𝑎) represents the size of the jump at 𝑎 ∈ ℝ in the CDF 𝐹(𝑎):

𝑃(𝑌 = 𝑎) = 𝐹(𝑎) − lim
𝜖→0

𝐹(𝑎 − 𝜖),

which is the jump height at 𝑎. Since continuous variables have no jumps in their CDF, all point
probabilities for such variables are zero. The total probability of continuous random variables
is spread continuously over an interval, so the probability of the variable being exactly equal
to any specific value is zero. Positive probabilities are assigned to intervals.

Basic rules for continuous random variables (with 𝑎 < 𝑏):

• 𝑃(𝑌 = 𝑎) = 0
• 𝑃(𝑌 ≤ 𝑎) = 𝑃 (𝑌 < 𝑎) = 𝐹(𝑎)
• 𝑃(𝑌 > 𝑎) = 𝑃 (𝑌 ≥ 𝑎) = 1 − 𝐹(𝑎)
• 𝑃(𝑎 < 𝑌 ≤ 𝑏) = 𝑃 (𝑎 < 𝑌 < 𝑏) = 𝐹(𝑏) − 𝐹(𝑎)
• 𝑃(𝑎 ≤ 𝑌 ≤ 𝑏) = 𝑃 (𝑎 ≤ 𝑌 < 𝑏) = 𝐹(𝑏) − 𝐹(𝑎)

Discrete random variables, unlike continuous ones, have non-zero probabilities at individual
points. We summarize the CDF jump heights or point probabilities in the probability mass
function:

Probability mass function (PMF)

The probability mass function (PMF) of a random variable 𝑌 is

𝜋(𝑎) ∶= 𝑃(𝑌 = 𝑎), 𝑎 ∈ ℝ
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The PMF of the coin variable is

𝜋(𝑎) = 𝑃(𝑌 = 𝑎) = {0.5 if 𝑎 ∈ {0, 1},
0 otherwise.

The education variable may have the following PMF:

𝜋(𝑎) = 𝑃(𝑌 = 𝑎) =

⎧{{{{{{{
⎨{{{{{{{⎩

0.008 if 𝑎 = 4
0.048 if 𝑎 = 10
0.392 if 𝑎 = 12
0.072 if 𝑎 = 13
0.155 if 𝑎 = 14
0.071 if 𝑎 = 16
0.225 if 𝑎 = 18
0.029 if 𝑎 = 21
0 otherwise

4.7 Bivariate distributions

A bivariate random variable is a vector of two univariate random variables, e.g., (𝑌 , 𝑍),
where 𝑌 is wage and 𝑍 is experience.

Bivariate distribution

The joint distribution function of a bivariate random variable (𝑌 , 𝑍) is

𝐹𝑌 𝑍(𝑎, 𝑏) = 𝑃(𝑌 ≤ 𝑎, 𝑍 ≤ 𝑏)
= 𝑃({𝑌 ≤ 𝑎} ∩ {𝑍 ≤ 𝑏})

Probabilities can be calculated using a bivariate distribution function in the following way:

𝑃(𝑌 ≤ 𝑎, 𝑍 ≤ 𝑏) = 𝐹𝑌 𝑍(𝑎, 𝑏)

𝑃 (𝑎 < 𝑌 ≤ 𝑏, 𝑐 < 𝑍 ≤ 𝑑)
= 𝐹𝑌 𝑍(𝑏, 𝑑) − 𝐹𝑌 𝑍(𝑏, 𝑐) − 𝐹𝑌 𝑍(𝑎, 𝑑) + 𝐹𝑌 𝑍(𝑎, 𝑐)

Marginal distributions
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Figure 4.5: Joint CDF of wage and experience

Figure 4.6: Calculate probabilities using the joint CDF

The marginal distributions of 𝑌 and 𝑍 are

𝐹𝑌 (𝑎) = 𝑃(𝑌 ≤ 𝑎)
= 𝑃(𝑌 ≤ 𝑎, 𝑍 < ∞)
= lim

𝑏→∞
𝐹𝑌 𝑍(𝑎, 𝑏)
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Figure 4.7: Calculate probabilities using the joint CDF

and

𝐹𝑍(𝑏) = 𝑃(𝑍 ≤ 𝑏)
= 𝑃(𝑌 < ∞, 𝑍 ≤ 𝑏)
= lim

𝑎→∞
𝐹𝑌 𝑍(𝑎, 𝑏).

Figure 4.8: Marginal CDF of experience

While the above example shows a bivariate random variable containing two continuous random
variables, we can also study discrete variables: Consider, for instance, the coin toss variable
𝑌 with 𝑃(𝑌 = 1) = 0.5 and 𝑃(𝑌 = 0) = 0.5, and let 𝑍 be a second coin toss with the
same probabilities. 𝑋 = (𝑌 , 𝑍) is a bivariate random variable where both entries are discrete
random variables.

Since the two coin tosses are performed separately from each other, it is reasonable to assume
that the probability that the first and second coin tosses show “heads” is 0.25, i.e., 𝑃({𝑌 =
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Figure 4.9: Marginal CDF of wage

1} ∩ {𝑍 = 1}) = 0.25. We would expect the following joint probabilities:

Table 4.2: Joint probabilities of coin tosses

𝑍 = 1 𝑍 = 0 any result
𝑌 = 1 0.25 0.25 0.5
𝑌 = 0 0.25 0.25 0.5
any result 0.5 0.5 1

The probabilities in the above table characterize the joint distribution of 𝑌 and 𝑍. The
table shows the values of the joint probability mass function:

𝜋𝑌 𝑍(𝑎, 𝑏) = {0.25 if 𝑎 ∈ {0, 1} and 𝑏 ∈ {0, 1}
0 otherwise

The joint CDF is:

𝐹𝑌 𝑍(𝑎, 𝑏) =

⎧{{{
⎨{{{⎩

0 if 𝑎 < 0 or 𝑏 < 0,
0.25 if 0 ≤ 𝑎 < 1 and 0 ≤ 𝑏 < 1,
0.5 if 0 ≤ 𝑎 < 1 and 𝑏 ≥ 1,
0.5 if 𝑎 ≥ 1 and 0 ≤ 𝑏 < 1,
1 if 𝑎 ≥ 1 and 𝑏 ≥ 1.

The marginal CDF of 𝑌 is:

𝐹𝑌 (𝑎) =
⎧{
⎨{⎩

0 if 𝑎 < 0,
0.5 if 0 ≤ 𝑎 < 1,
1 if 𝑎 ≥ 1.
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The marginal CDF of 𝑍 is:

𝐹𝑍(𝑏) =
⎧{
⎨{⎩

0 if 𝑏 < 0,
0.5 if 0 ≤ 𝑏 < 1,
1 if 𝑏 ≥ 1.

Another example are the random variables 𝑌 , a dummy variable for the event that the person
has a high wage (more than 25 USD/hour), and 𝑍, a dummy variable for the event that the
same person has a university degree.

Similarly, 𝑋 = (𝑌 , 𝑍) is a bivariate random variable consisting of two univariate Bernoulli
variables. The joint probabilities might be as follows:

Table 4.3: Joint probabilities of wage and education dummies

Z=1 Z=0 any education
Y=1 0.19 0.12 0.31
Y=0 0.17 0.52 0.69
any wage 0.36 0.64 1

The joint probability mass function is

𝜋𝑌 𝑍(𝑎, 𝑏) =

⎧{{{
⎨{{{⎩

0.19 if 𝑎 = 1, 𝑏 = 1,
0.12 if 𝑎 = 1, 𝑏 = 0,
0.17 if 𝑎 = 0, 𝑏 = 1,
0.52 if 𝑎 = 0, 𝑏 = 0,
0 otherwise.

The joint CDF is:

𝐹𝑌 𝑍(𝑎, 𝑏) =

⎧{{{
⎨{{{⎩

0 if 𝑎 < 0 or 𝑏 < 0,
0.52 if 0 ≤ 𝑎 < 1 and 0 ≤ 𝑏 < 1,
0.69 if 0 ≤ 𝑎 < 1 and 𝑏 ≥ 1,
0.64 if 𝑎 ≥ 1 and 0 ≤ 𝑏 < 1,
1 if 𝑎 ≥ 1 and 𝑏 ≥ 1.

The marginal CDF of 𝑌 is:

𝐹𝑌 (𝑎) =
⎧{
⎨{⎩

0 if 𝑎 < 0,
0.69 if 0 ≤ 𝑎 < 1,
1 if 𝑎 ≥ 1.
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The marginal CDF of 𝑍 is:

𝐹𝑍(𝑏) =
⎧{
⎨{⎩

0 if 𝑏 < 0,
0.64 if 0 ≤ 𝑏 < 1,
1 if 𝑏 ≥ 1.

4.8 Independence

Two events 𝐴 and 𝐵 are independent if

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵).

For instance, in the bivariate random variable of Table 4.2 (two coin tosses), we have

𝑃(𝑌 = 1, 𝑍 = 1) = 0.25
= 0.5 ⋅ 0.5
= 𝑃(𝑌 = 1)𝑃(𝑍 = 1).

Hence, {𝑌 = 1} and {𝑍 = 1} are independent events. In the bivariate random variable of
Table 4.3 (wage/education), we find

𝑃(𝑌 = 1, 𝑍 = 1) = 0.19
≠ 𝑃(𝑌 = 1)𝑃(𝑍 = 1)
= 0.31 ⋅ 0.36
= 0.1116.

Therefore, the two events are not independent. In this case, the two random variables are
dependent.

Independence

𝑌 and 𝑍 are independent random variables if, for all 𝑎 and 𝑏, the bivariate distribution
function is the product of the marginal distribution functions:

𝐹𝑌 𝑍(𝑎, 𝑏) = 𝐹𝑌 (𝑎)𝐹𝑍(𝑏).

If this property is not satisfied, we say that 𝑋 and 𝑌 are dependent.

The random variables 𝑌 and 𝑍 of Table 4.2 are independent, and those of Table 4.3 are
dependent.
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4.9 Multivariate distributions

In statistics, we typically study multiple random variables simultaneously. We can collect 𝑛
random variables 𝑍1, … , 𝑍𝑛 in a 𝑛 × 1 random vector

𝑍𝑍𝑍 = ⎛⎜
⎝

𝑍1
⋮

𝑍𝑛

⎞⎟
⎠

= (𝑍1, … , 𝑍𝑛)′.

We also call 𝑍𝑍𝑍 a 𝑛-variate random variable.

For example, 𝑍1, … , 𝑍𝑛 could represent 𝑛 repeated coin tosses or the wage levels of the first 𝑛
individuals interviewed.

Since 𝑍𝑍𝑍 is a random vector, its outcome is also a vector, e.g., {𝑍𝑍𝑍 = 𝑏𝑏𝑏} with 𝑏𝑏𝑏 = (𝑏1, … , 𝑏𝑛)′ ∈ ℝ𝑛.
Events of the form {𝑍𝑍𝑍 ≤ 𝑏𝑏𝑏} mean that each component of the random vector 𝑍𝑍𝑍 is smaller than
the corresponding values of the vector 𝑏𝑏𝑏, i.e.

{𝑍𝑍𝑍 ≤ 𝑏𝑏𝑏} = {𝑍1 ≤ 𝑏1, … , 𝑍𝑛 ≤ 𝑏𝑛}.

The concepts of the CDF and independence can be generalized to any 𝑛-variate random vector
𝑍𝑍𝑍 = (𝑍1, … , 𝑍𝑛)′. The joint CDF of 𝑍𝑍𝑍 is

𝐹𝑍(𝑏𝑏𝑏) = 𝑃(𝑍1 ≤ 𝑏1, … , 𝑍𝑛 ≤ 𝑏𝑛)
= 𝑃({𝑍1 ≤ 𝑏1} ∩ … ∩ {𝑍𝑛 ≤ 𝑏𝑛}).

𝑍𝑍𝑍 has mutually independent entries if

𝐹𝑍(𝑏𝑏𝑏) =
𝑛

∏
𝑖=1

𝐹𝑍𝑖
(𝑏𝑖).

That is,
𝑃(𝑍1 ≤ 𝑏1, … , 𝑍𝑛 ≤ 𝑏𝑛) = 𝑃(𝑍1 ≤ 𝑏1) ⋅ … ⋅ 𝑃 (𝑍𝑛 ≤ 𝑏𝑛).

4.10 IID sampling

In statistical analysis, a dataset {𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛} that is drawn from some population 𝐹 is called
sample.

The CPS data are cross-sectional data, where 𝑛 individuals are randomly selected from
the US population and independently interviewed on 𝑘 variables. The US data consists of 𝑛
independently replicated random experiments.

i.i.d. sample / random sample
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A collection of random vectors {𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛} is i.i.d. (independent and identically dis-
tributed) if they are mutually independent and have the same distribution function 𝐹 for all
𝑖 ≠ 𝑗.

An i.i.d. dataset or i.i.d. sample is also called a random sample. 𝐹 is called population
distribution or data-generating process (DGP).

Any transformed sample {𝑔(𝑋𝑋𝑋1), … , 𝑔(𝑋𝑋𝑋𝑛)} of an i.i.d. sample {𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛} is also an i.i.d.
sample (𝑔 may be any function). For instance, if the wages of 𝑛 interviewed individuals are
i.i.d., then the log-wages are also i.i.d.

Sampling methods of obtaining economic datasets that may be considered as random sampling
are:

• Survey sampling
Examples: representative survey of randomly selected households from a list of residential
addresses; online questionnaire to a random sample of recent customers

• Administrative records
Examples: data from a government agency database, Statistisches Bundesamt, ECB,
etc.

• Direct observation
Collected data without experimental control and interactions with the subject. Example:
monitoring customer behavior in a retail store

• Web scraping
Examples: collected house prices on real estate sites or hotel/electronics prices on book-
ing.com/amazon, etc.

• Field experiment
To study the impact of a treatment or intervention on a treatment group compared
with a control group. Example: testing the effectiveness of a new teaching method by
implementing it in a selected group of schools and comparing results to other schools
with traditional methods

• Laboratory experiment
Example: a controlled medical trial for a new drug

Examples of cross-sectional data sampling that may produce some dependence across observa-
tions are:

• Stratified sampling
The population is first divided into homogenous subpopulations (strata), and a random
sample is obtained from each stratum independently. Examples: divide companies into
industry strata (manufacturing, technology, agriculture, etc.) and sample from each
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stratum; divide the population into income strata (low-income, middle-income, high-
income).
The sample is independent within each stratum, but it is not between different strata.
The strata are defined based on specific characteristics that may be correlated with the
variables collected in the sample.

• Clustered sampling
Entire subpopulations are drawn. Example: new teaching methods are compared to tra-
ditional ones on the student level, where only certain classrooms are randomly selected,
and all students in the selected classes are evaluated.
Within each cluster (classroom), the sample is dependent because of the shared environ-
ment and teacher’s performance, but between classrooms, it is independent.

Other types of data we often encounter in econometrics are time series data, panel data, or
spatial data:

• Time series data consists of observations collected at different points in time, such as
stock prices, daily temperature measurements, or GDP figures. These observations are
ordered and typically show temporal trends, seasonality, and autocorrelation.

• Panel data involves observations collected on multiple entities (e.g., individuals, firms,
countries) over multiple time periods.

• Spatial data includes observations taken at different geographic locations, where values
at nearby locations are often correlated.

Time series, panel, and spatial data cannot be considered a random sample given their temporal
or geographic dependence.

4.11 R-codes

statistics-sec04.R
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