
5 Regression

5.1 Conditional Expectation

In econometrics, we often analyze how a variable of interest (like wages) varies systematically
with other variables (like education or experience). The conditional expectation function
(CEF) provides a powerful framework for describing these relationships.

The conditional expectation of a random variable 𝑌 given a random vector 𝑋𝑋𝑋 is the expected
value of 𝑌 given any possible value of 𝑋𝑋𝑋. Using the conditional CDF, the conditional expec-
tation (or conditional mean) is

𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥] = ∫
∞

−∞
𝑦 𝑑𝐹𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦).

For a continuous random variable 𝑌 we have

𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥] = ∫
∞

−∞
𝑦 𝑓𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦) 𝑑𝑦,

where 𝑓𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦) is the conditional density of 𝑌 given 𝑋𝑋𝑋 = 𝑥𝑥𝑥.

When 𝑌 is discrete with support 𝒴, we have

𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥] = ∑
𝑦∈𝒴

𝑦 𝜋𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦).

The CEF maps values of 𝑋𝑋𝑋 to corresponding conditional means of 𝑌 . As a function of the
random vector 𝑋𝑋𝑋, the CEF itself is a random variable:

𝐸[𝑌 |𝑋𝑋𝑋] = 𝑚(𝑋𝑋𝑋), where 𝑚(𝑥𝑥𝑥) = 𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥]

For a comprehensive treatment of conditional expectations see Probability Tutorial
Part 2
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(a) Unconditional density of wage (b) Conditional density of wage given different years
of education

Figure 5.1: Unconditional density 𝑓𝑌 (𝑦) and conditional densities 𝑓𝑌 |𝑋=𝑥(𝑦) of wage given 𝑥
years of education

Examples

Let’s examine this concept using wage and education as examples. When 𝑋 is univariate and
discrete (such as years of education), we can analyze how wage distributions change across
education levels by comparing their conditional distributions:

Notice how the conditional distributions tend to shift rightward as education increases, indi-
cating higher average wages with higher education.

From these conditional densities, we can compute the expected wage for each education level.
Plotting these conditional expectations gives the CEF:

𝑚(𝑥) = 𝐸[wage ∣ edu = 𝑥]

Since education is discrete, the CEF is defined only at specific values, as shown in the left plot
below:

When 𝑋 is continuous (like years of experience), the CEF is often a smooth function (right
plot). The shape of 𝐸[wage|experience] reflects real-world patterns: wages rise quickly early
in careers, then plateau, and may eventually decline near retirement.

The CEF as a Random Variable

It’s important to distinguish between:

• 𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥]: a number (the conditional mean at a specific value)
• 𝐸[𝑌 |𝑋𝑋𝑋]: a function of 𝑋𝑋𝑋, which is itself a random variable
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(a) CEF of wage given education (b) CEF of wage given experience

Figure 5.2: Conditional expectations of wage given education (left) and experience (right)

For instance, if 𝑋 = education has the probability mass function:

𝑃(𝑋 = 𝑥) =

⎧{{{{{
⎨{{{{{⎩

0.06 if 𝑥 = 10
0.43 if 𝑥 = 12
0.16 if 𝑥 = 14
0.08 if 𝑥 = 16
0.24 if 𝑥 = 18
0.03 if 𝑥 = 21
0 otherwise

Then 𝐸[𝑌 |𝑋] as a random variable has the probability mass function:

𝑃(𝐸[𝑌 |𝑋] = 𝑦) =

⎧{{{{{
⎨{{{{{⎩

0.06 if 𝑦 = 11.68 (when 𝑋 = 10)
0.43 if 𝑦 = 14.26 (when 𝑋 = 12)
0.16 if 𝑦 = 17.80 (when 𝑋 = 14)
0.08 if 𝑦 = 16.84 (when 𝑋 = 16)
0.24 if 𝑦 = 21.12 (when 𝑋 = 18)
0.03 if 𝑦 = 27.05 (when 𝑋 = 21)
0 otherwise,

where the values for 𝑦 are taken from Figure 5.2a.

The CEF assigns to each value of 𝑋𝑋𝑋 the expected value of 𝑌 given that information.
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5.2 CEF Properties

The conditional expectation function has several important properties that make it a funda-
mental tool in econometric analysis.

Law of Iterated Expectations (LIE)

The law of iterated expectations connects conditional and unconditional expectations:

𝐸[𝑌 ] = 𝐸[𝐸[𝑌 |𝑋𝑋𝑋]]

This means that to compute the overall average of 𝑌 , we can first compute the average of 𝑌
within each group defined by 𝑋𝑋𝑋, then average those conditional means using the distribution
of 𝑋𝑋𝑋.

This is analogous to the law of total probability, where we compute marginal probabilities or
densities as weighted averages of conditional ones:

For simplicity consider a univariate conditioning random variable 𝑋. When 𝑋 is discrete:

𝑃(𝑌 = 𝑦) = ∑
𝑥

𝑃(𝑌 = 𝑦 ∣ 𝑋 = 𝑥) ⋅ 𝑃 (𝑋 = 𝑥)

When 𝑋 is continuous:
𝑓𝑌 (𝑦) = ∫

∞

−∞
𝑓𝑌 |𝑋=𝑥(𝑦) ⋅ 𝑓𝑋(𝑥) 𝑑𝑥

Similarly, the LIE states:

When 𝑋 is discrete:
𝐸[𝑌 ] = ∑

𝑥
𝐸[𝑌 ∣ 𝑋 = 𝑥] ⋅ 𝑃 (𝑋 = 𝑥)

When 𝑋 is continuous:
𝐸[𝑌 ] = ∫

∞

−∞
𝐸[𝑌 ∣ 𝑋 = 𝑥] ⋅ 𝑓𝑋(𝑥) 𝑑𝑥

Let’s apply this to our wage and education example. With 𝑋 = education and 𝑌 = wage, we
have:
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𝐸[𝑌 |𝑋 = 10] = 11.68, 𝑃 (𝑋 = 10) = 0.06
𝐸[𝑌 |𝑋 = 12] = 14.26, 𝑃 (𝑋 = 12) = 0.43
𝐸[𝑌 |𝑋 = 14] = 17.80, 𝑃 (𝑋 = 14) = 0.16
𝐸[𝑌 |𝑋 = 16] = 16.84, 𝑃 (𝑋 = 16) = 0.08
𝐸[𝑌 |𝑋 = 18] = 21.12, 𝑃 (𝑋 = 18) = 0.24
𝐸[𝑌 |𝑋 = 21] = 27.05, 𝑃 (𝑋 = 21) = 0.03

The law of iterated expectations gives us:

𝐸[𝑌 ] = ∑
𝑥

𝐸[𝑌 |𝑋 = 𝑥] ⋅ 𝑃 (𝑋 = 𝑥)

= 11.68 ⋅ 0.06 + 14.26 ⋅ 0.43 + 17.80 ⋅ 0.16
+ 16.84 ⋅ 0.08 + 21.12 ⋅ 0.24 + 27.05 ⋅ 0.03

= 0.7008 + 6.1318 + 2.848 + 1.3472 + 5.0688 + 0.8115
= 16.91

This unconditional expected wage of 16.91 aligns with what we would calculate from the
unconditional density from Figure 5.1a.

The LIE provides us with a powerful way to bridge conditional expectations (within education
groups) and the overall unconditional expectation (averaging across all education levels).

Conditioning Theorem (CT)

The conditioning theorem (also called the factorization rule) states:

𝐸[𝑔(𝑋𝑋𝑋)𝑌 |𝑋𝑋𝑋] = 𝑔(𝑋𝑋𝑋) ⋅ 𝐸[𝑌 |𝑋𝑋𝑋]

This means that when taking the conditional expectation of a product where one factor is a
function of the conditioning variable, that factor can be treated as a constant and factored
out. Once we condition on 𝑋𝑋𝑋, the value of 𝑔(𝑋𝑋𝑋) is fixed.

If 𝑌 = wage and 𝑋 = education, then for someone with 16 years of education:

𝐸[16 ⋅ wage ∣ edu = 16] = 16 ⋅ 𝐸[wage ∣ edu = 16]

More generally, if we want to find the expected product of education and wage, conditional on
education:

𝐸[edu ⋅ wage ∣ edu] = edu ⋅ 𝐸[wage ∣ edu]
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Best Predictor Property

If 𝐸[𝑌 2] < ∞, the conditional expectation 𝐸[𝑌 |𝑋𝑋𝑋] is the best predictor of 𝑌 given 𝑋𝑋𝑋 in
terms of mean squared error, i.e.:

𝐸[𝑌 |𝑋𝑋𝑋] = arg min
𝑔(⋅)

𝐸[(𝑌 − 𝑔(𝑋𝑋𝑋))2]

This means that among all possible functions of 𝑋𝑋𝑋, the CEF minimizes the expected squared
prediction error. In practical terms, if you want to predict wages based only on education, the
optimal prediction is exactly the conditional mean wage for each education level.

For example, if someone has 18 years of education, our best prediction of their wage (minimiz-
ing expected squared error) is 𝐸[wage|education = 18] = 21.12.

No other function of education, whether linear, quadratic, or more complex, can yield a better
prediction in terms of expected squared error than the CEF itself.

Proof sketch: Add and subtract 𝑚(𝑋𝑋𝑋) = 𝐸[𝑌 |𝑋𝑋𝑋]:
𝐸[(𝑌 − 𝑔(𝑋𝑋𝑋))2]
= 𝐸[(𝑌 − 𝑚(𝑋𝑋𝑋) + 𝑚(𝑋𝑋𝑋) − 𝑔(𝑋𝑋𝑋))2]
= 𝐸[(𝑌 − 𝑚(𝑋𝑋𝑋))2]

+ 2𝐸[(𝑌 − 𝑚(𝑋𝑋𝑋))(𝑚(𝑋𝑋𝑋) − 𝑔(𝑋𝑋𝑋))]
+ 𝐸[(𝑚(𝑋𝑋𝑋) − 𝑔(𝑋𝑋𝑋))2]

• The first term is finite and does not depend on 𝑔(⋅).
• The cross term is zero by the LIE and CT.
• The last term is minimal if 𝑔(𝑋𝑋𝑋) = 𝑚(𝑋𝑋𝑋).

Independence Implications

If 𝑌 and 𝑋𝑋𝑋 are independent, then:
𝐸[𝑌 |𝑋𝑋𝑋] = 𝐸[𝑌 ]

When variables are independent, knowing 𝑋𝑋𝑋 provides no information about 𝑌 , so the condi-
tional expectation equals the unconditional expectation. The CEF becomes a constant function
that doesn’t vary with 𝑋𝑋𝑋.

In our wage example, if education and wage were completely independent, the CEF would
be a horizontal line at the overall average wage of 16.91. Each conditional density 𝑓𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦)
would be identical to the unconditional density 𝑓𝑌 (𝑦), and the conditional means would all
equal the unconditional mean.

The fact that our CEF for wage given education has a positive slope indicates that these
variables are not independent – higher education is associated with higher expected wages.
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5.3 Linear Model Specification

Prediction Error

Consider a sample (𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛. We have established that the conditional expec-

tation function (CEF) 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] is the best predictor of 𝑌𝑖 given 𝑋𝑋𝑋𝑖, minimizing the mean
squared prediction error.

This leads to the following prediction error:

𝑢𝑖 = 𝑌𝑖 − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖]

By construction, this error has a conditional mean of zero:

𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0

This property follows directly from the law of iterated expectations:

𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 𝐸[𝑌𝑖 − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ∣ 𝑋𝑋𝑋𝑖]
= 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] − 𝐸[𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ∣ 𝑋𝑋𝑋𝑖]
= 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 0

We can thus always decompose the outcome as:

𝑌𝑖 = 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] + 𝑢𝑖

where 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0. This equation is not yet a regression model. It’s simply the decomposition
of 𝑌𝑖 into its conditional expectation and an unpredictable component.

Linear Regression Model

To move to a regression framework, we impose a structural assumption about the form of the
CEF. The key assumption of the linear regression model is that the conditional expectation
is a linear function of the regressors:

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽

Substituting this into our decomposition yields the linear regression equation:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖 (5.1)

with the crucial assumption:
𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0 (5.2)
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Exogeneity

This assumption (Equation 5.2) is called exogeneity or mean independence. It ensures
that the linear function 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 correctly captures the conditional mean of 𝑌𝑖.

Under the linear regression equation (Equation 5.1) we have the following equivalence:

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 ⇔ 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0

Therefore, the linear regression model in its most general form is characterized by the two con-
ditions: linear regression equation (Equation 5.1) and exogenous regressors (Equation 5.2).

For example, in a wage regression, exogeneity means that the expected wage conditional on
education and experience is exactly captured by the linear combination of these variables. No
systematic pattern remains in the error term.

Model Misspecification

If the true conditional expectation function is nonlinear (e.g., if wages increase with education
at a diminishing rate), then 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ≠ 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽, and the model is misspecified. In such cases, the
linear model provides the best linear approximation to the true CEF, but systematic patterns
remain in the error term.

It’s important to note that 𝑢𝑖 may still be statistically dependent on 𝑋𝑋𝑋𝑖 in ways other than its
mean. For example, the variance of 𝑢𝑖 may depend on 𝑋𝑋𝑋𝑖 in the case of heteroskedasticity.
For instance, wage dispersion might increase with education level. The assumption 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] =
0 requires only that the conditional mean of the error is zero, not that the error is completely
independent of the regressors.

5.4 Population Regression Coefficient

Under the linear regression model

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0,

we are interested in the population regression coefficient 𝛽𝛽𝛽, which indicates how the
conditional mean of 𝑌𝑖 varies linearly with the regressors in 𝑋𝑋𝑋𝑖.
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Moment Condition

A key implication of the exogeneity condition 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0 is that the regressors are mean
uncorrelated with the error term:

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000

This can be derived from the exogeneity condition using the LIE:

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝐸[𝑋𝑋𝑋𝑖𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖]] = 𝐸[𝑋𝑋𝑋𝑖 ⋅ 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]] = 𝐸[𝑋𝑋𝑋𝑖 ⋅ 0] = 000

Substituting the linear model into the mean uncorrelatedness condition gives a moment con-
dition that identifies 𝛽𝛽𝛽:

000 = 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝑋𝑋𝑋𝑖(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽)] = 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] − 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]𝛽𝛽𝛽

Rearranging to solve for 𝛽𝛽𝛽:
𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]𝛽𝛽𝛽

Assuming that the matrix 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is invertible, we can express the population regression

coefficient as:
𝛽𝛽𝛽 = (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖])
−1 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] (5.3)

This expression shows that 𝛽𝛽𝛽 is entirely determined by the joint distribution of (𝑌𝑖,𝑋𝑋𝑋′
𝑖) in the

population.

The invertibility of 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is guaranteed if there is no perfect linear relationship among the

regressors. In particular, no pair of regressors should be perfectly correlated, and no regressor
should be a perfect linear combination of the other regressors.

OLS Estimation

Recall that we have estimated population moments like 𝐸[𝑌 ] and Var(𝑌 ) by their sample
counterparts, i.e. 𝑌 and 𝜎̂2

𝑌 . This estimation principle is known as the method of moments,
where we replace population moments by their corresponding sample moments.

To estimate the population regression coefficient

𝛽𝛽𝛽 = (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖])

−1 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖]

using a given i.i.d. sample (𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛, we replace all population moments by their

sample counterparts, i.e.,

̂𝛽𝛽𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖) .
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This can be simplified to the familiar form

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖) ,

or ̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 , which is called the ordinary least squares (OLS) estimator.

5.5 Consistency

Recall that the law of large numbers for a univariate i.i.d. dataset 𝑌1, … , 𝑌𝑛 states that the
sample average converges in probability to the population mean:

1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖
𝑝

→ 𝐸[𝑌 ] as 𝑛 → ∞.

The OLS estimator is a function of two sample averages: the sample second moment matrix
1
𝑛 ∑𝑛

𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖 and the sample cross-moment vector 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑌𝑖.

If (𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛, are i.i.d., then the multivariate version of the law of large numbers

applies:
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖],
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖
𝑝

→ 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖].

This means that convergence in probability holds componentwise. Each element of the sample
moment matrix and vector converges to its corresponding population counterpart.

The continuous mapping theorem and Slutsky’s lemma enable us to extend these convergence
results to more complex expressions.

• If 𝑓(⋅) is a continuous function and 𝑉𝑛
𝑝

→ 𝑐, then 𝑓(𝑉𝑛)
𝑝

→ 𝑓(𝑐) (continuous mapping
theorem).

• If 𝑉𝑛
𝑝

→ 𝑐 and 𝑊𝑛
𝑝

→ 𝑑 then 𝑉𝑛𝑊𝑛
𝑝

→ 𝑐𝑑 (Slutsky’s lemma).

Since matrix inversion is a continuous function, the continuous mapping theorem implies:

( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑝
→ (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖])
−1.

Applying Slutsky’s lemma to combine the two convergence results yields:

̂𝛽𝛽𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖)

𝑝
→ (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖])
−1𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] = 𝛽𝛽𝛽.
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This establishes the consistency of the OLS estimator. We used the following regularity con-
ditions:

1) Random sampling: (𝑌𝑖,𝑋𝑋𝑋′
𝑖) are i.i.d.

2) Exogeneity (mean independence): 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0.
3) Finite second moments: 𝐸[𝑋2

𝑖𝑗] < ∞ and 𝐸[𝑌 2
𝑖 ] < ∞.

4) Full rank: 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is positive definite (hence invertible).

Neither normality nor homoskedasticity is required for consistency. Heteroskedasticity is fully
compatible with OLS consistency.

For any two random variables 𝑌 and 𝑍, the Cauchy-Schwarz inequality states |𝐸[𝑌 𝑍]| ≤
√𝐸[𝑌 2]𝐸[𝑍2]. Specifically, |𝐸[𝑋𝑖𝑘𝑋𝑖𝑙]| ≤ √𝐸[𝑋2

𝑖𝑘]𝐸[𝑋2
𝑖𝑙] and |𝐸[𝑋𝑖𝑘𝑌𝑖]| ≤ √𝐸[𝑋2

𝑖𝑘]𝐸[𝑌 2
𝑖 ].

Therefore, the finite second moment condition ensures that 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] and 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] are finite.

The full rank condition ensures that 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖]−1 exists. Thus, the full rank and finite second

moments conditions ensure that 𝛽𝛽𝛽 is well-defined.

The exogeneity condition is crucial for OLS consistency. Without it, the model is misspecified,
Equation 5.3 does not hold, and the OLS estimator would converge to the best linear predictor,
which is the 𝛽𝛽𝛽∗ that minimizes 𝐸[(𝑌𝑖 − 𝑋𝑋𝑋′

𝑖𝑏𝑏𝑏)2].
Just as with the univariate law of large numbers, the i.i.d. assumption can be relaxed to
accommodate other sampling schemes. Under clustered sampling with independent clusters,
OLS consistency holds if the number of clusters grows large relative to cluster size as 𝑛 → ∞.
For time series data, (𝑌𝑖,𝑋𝑋𝑋′

𝑖) must be stationary, and observations (𝑌𝑖,𝑋𝑋𝑋′
𝑖) and (𝑌𝑖−𝑗,𝑋𝑋𝑋′

𝑖−𝑗)
must become independent as 𝑗 increases (strong mixing / weak dependence).

5.6 R Code

statistics-sec05.R
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