5 Regression

5.1 Conditional Expectation

In econometrics, we often analyze how a variable of interest (like wages) varies systematically
with other variables (like education or experience). The conditional expectation function
(CEF) provides a powerful framework for describing these relationships.

The conditional expectation of a random variable Y given a random vector X is the expected
value of Y given any possible value of X. Using the conditional CDF, the conditional expec-
tation (or conditional mean) is

o0

EV|X = 2] = / ydFy x_o(y).

For a continuous random variable Y we have
BYIX =a= [ yfyx-a)dv

where fyx_,(y) is the conditional density of Y given X = z.

When Y is discrete with support ¥, we have

EY|IX =2 =) ymyx—s(¥).
yey

The CEF maps values of X to corresponding conditional means of Y. As a function of the
random vector X, the CEF itself is a random variable:

E[Y|X] =m(X), where m(z)= E[Y|X = z]

@ For a comprehensive treatment of conditional expectations see Probability Tutorial
Part 2
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Figure 5.1: Unconditional density fy(y) and conditional densities fyy_,(y) of wage given z
years of education

Examples

Let’s examine this concept using wage and education as examples. When X is univariate and
discrete (such as years of education), we can analyze how wage distributions change across
education levels by comparing their conditional distributions:

Notice how the conditional distributions tend to shift rightward as education increases, indi-
cating higher average wages with higher education.

From these conditional densities, we can compute the expected wage for each education level.
Plotting these conditional expectations gives the CEF:

m(z) = E[wage | edu = z]

Since education is discrete, the CEF is defined only at specific values, as shown in the left plot
below:

When X is continuous (like years of experience), the CEF is often a smooth function (right
plot). The shape of E[wage|experience| reflects real-world patterns: wages rise quickly early
in careers, then plateau, and may eventually decline near retirement.

The CEF as a Random Variable

It’s important to distinguish between:

o E]Y|X =z]: a number (the conditional mean at a specific value)
o E[Y|X]: a function of X, which is itself a random variable
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Figure 5.2: Conditional expectations of wage given education (left) and experience (right)

For instance, if X = education has the probability mass function:

0.06 ifz=10

0.43 ifzx =12

0.16 ifz=14
P(X=2)=1008 ifz=16
0.24 if x =18

0.03 ifz=21

L0 otherwise

Then E[Y|X] as a random variable has the probability mass function:

0.06 if y=11.68 (when X = 10)
0.43 if y = 14.26 (when X = 12)
0.16 if y =17.80 (when X = 14)
P(E[Y|X]=y) =008 ify=16.84 (when X = 16)
0.24 if y=21.12 (when X = 18)
0.03 if y =27.05 (when X = 21)

0 otherwise,

where the values for y are taken from Figure 5.2a.

The CEF assigns to each value of X the expected value of Y given that information.
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5.2 CEF Properties

The conditional expectation function has several important properties that make it a funda-
mental tool in econometric analysis.

Law of Iterated Expectations (LIE)

The law of iterated expectations connects conditional and unconditional expectations:

E[Y] = E[E[Y]X]]

This means that to compute the overall average of Y, we can first compute the average of Y
within each group defined by X, then average those conditional means using the distribution
of X.

This is analogous to the law of total probability, where we compute marginal probabilities or
densities as weighted averages of conditional ones:

For simplicity consider a univariate conditioning random variable X. When X is discrete:

PY=y)=> PY=y|X=2)-P(X=ux)
When X is continuous:

fy(y) = [ fY\X:w(y) fx(z)dx

Similarly, the LIE states:

When X is discrete:
EY]=) E[Y|X=2] P(X =x)

When X is continuous: -
BY)= [ EIY|X =] fy(o)ds

Let’s apply this to our wage and education example. With X = education and Y = wage, we
have:
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E[Y|X =10] = 11.68, P(X =10) =0.06
E[Y|X = 12] = 14.26, P(X =12) =043
E[Y|X = 14] = 17.80, P(X =14) =0.16

ElY|X =18 =21.12, P

[ ] (
[ ] (
[ ] (
E[Y|X =16] =16.84, P(
[ ] (
E[Y|X =21] =27.05, P(

The law of iterated expectations gives us:
E[Y]=) E[Y|X =a]-P(X =x)

=11.68-0.06 4+ 14.26 - 0.43 + 17.80 - 0.16

+16.84 - 0.08 + 21.12 - 0.24 + 27.05 - 0.03
= 0.7008 + 6.1318 4- 2.848 + 1.3472 + 5.0688 + 0.8115
=16.91

This unconditional expected wage of 16.91 aligns with what we would calculate from the
unconditional density from Figure 5.1a.

The LIE provides us with a powerful way to bridge conditional expectations (within education
groups) and the overall unconditional expectation (averaging across all education levels).

Conditioning Theorem (CT)

The conditioning theorem (also called the factorization rule) states:

Elg(X)Y|X] = g(X) - E[Y|X]

This means that when taking the conditional expectation of a product where one factor is a
function of the conditioning variable, that factor can be treated as a constant and factored
out. Once we condition on X, the value of g(X) is fixed.

If Y = wage and X = education, then for someone with 16 years of education:

E[16 - wage | edu = 16] = 16 - E[wage | edu = 16]

More generally, if we want to find the expected product of education and wage, conditional on
education:
Eledu - wage | edu] = edu - E[wage | edu]
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Best Predictor Property

If E[Y?] < oo, the conditional expectation E[Y|X] is the best predictor of Y given X in
terms of mean squared error, i.e.:

BY|X] = argmin B[(Y — 9(X))?]

This means that among all possible functions of X, the CEF minimizes the expected squared
prediction error. In practical terms, if you want to predict wages based only on education, the
optimal prediction is exactly the conditional mean wage for each education level.

For example, if someone has 18 years of education, our best prediction of their wage (minimiz-
ing expected squared error) is E[wage|education = 18] = 21.12.

No other function of education, whether linear, quadratic, or more complex, can yield a better
prediction in terms of expected squared error than the CEF itself.

Proof sketch: Add and subtract m(X) = E[Y|X]:

E
E[( —9(X ))2]
= B[(Y —m(X) + m(X) — g(X))]
= B[(Y —m(X))’]
+ QE[(Y —m(X))(m(X) — g(X))]
+ E[(m(X) — g(X))?]
e The first term is finite and does not depend on g(-).

e The cross term is zero by the LIE and CT.
o The last term is minimal if g(X) = m(X).

Independence Implications

If Y and X are independent, then:
E[Y|X] = E[Y]

When variables are independent, knowing X provides no information about Y, so the condi-
tional expectation equals the unconditional expectation. The CEF becomes a constant function
that doesn’t vary with X.

In our wage example, if education and wage were completely independent, the CEF would
be a horizontal line at the overall average wage of 16.91. Each conditional density fyx_5(y)
would be identical to the unconditional density fy (y), and the conditional means would all
equal the unconditional mean.

The fact that our CEF for wage given education has a positive slope indicates that these
variables are not independent — higher education is associated with higher expected wages.
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5.3 Linear Model Specification

Prediction Error

Consider a sample (Y;,X}), i = 1,...,n. We have established that the conditional expec-
tation function (CEF) E[Y;|X,] is the best predictor of Y, given X;, minimizing the mean
squared prediction error.

This leads to the following prediction error:

=Y, — E[Y;|X]]

Uy

By construction, this error has a conditional mean of zero:

BElu;| X;] =0

This property follows directly from the law of iterated expectations:

Elvw;|X;] = E[Y; — E[Y;|X,] | X]
EY;|X;] — E[E[Y;|X,] | X;]

E[Y;|X,] - E[Y,|X;] = 0

We can thus always decompose the outcome as:
Y; = E[Y;|X;] + v,

where Flu,;|X,;] = 0. This equation is not yet a regression model. It’s simply the decomposition

of Y, into its conditional expectation and an unpredictable component.

Linear Regression Model

To move to a regression framework, we impose a structural assumption about the form of the
CEF. The key assumption of the linear regression model is that the conditional expectation
is a linear function of the regressors:

EIY,X,] = X/

Substituting this into our decomposition yields the linear regression equation:

Y, = XiB+u, (5.1)

with the crucial assumption:
Elu;|X;] =0 (5.2)
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Exogeneity
This assumption (Equation 5.2) is called exogeneity or mean independence. It ensures
that the linear function X B correctly captures the conditional mean of Y;.

Under the linear regression equation (Equation 5.1) we have the following equivalence:

EY;|X,]=XiB < ElulX;]=0

Therefore, the linear regression model in its most general form is characterized by the two con-
ditions: linear regression equation (Equation 5.1) and exogenous regressors (Equation 5.2).

For example, in a wage regression, exogeneity means that the expected wage conditional on
education and experience is exactly captured by the linear combination of these variables. No
systematic pattern remains in the error term.

Model Misspecification

If the true conditional expectation function is nonlinear (e.g., if wages increase with education
at a diminishing rate), then E[Y;|X ;] # X8, and the model is misspecified. In such cases, the
linear model provides the best linear approximation to the true CEF, but systematic patterns
remain in the error term.

It’s important to note that u; may still be statistically dependent on X, in ways other than its
mean. For example, the variance of u; may depend on X in the case of heteroskedasticity.
For instance, wage dispersion might increase with education level. The assumption Flu,;|X;] =
0 requires only that the conditional mean of the error is zero, not that the error is completely
independent of the regressors.

5.4 Population Regression Coefficient

Under the linear regression model
Y, =XB+u,;, ElulX;]=0,

we are interested in the population regression coefficient 8, which indicates how the
conditional mean of Y; varies linearly with the regressors in X,.
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Moment Condition

A key implication of the exogeneity condition E[u,;|X,] = 0 is that the regressors are mean
uncorrelated with the error term:

EX,u;] =0
This can be derived from the exogeneity condition using the LIE:
EBlXu;| = E[E[X;u; | Xi]| = E[X; - Elu;| X ]| = E[X,; - 0] =0
Substituting the linear model into the mean uncorrelatedness condition gives a moment con-
dition that identifies B:
0 = E[X;u;] = E[X;(Y; — XB)] = E[X;Y;] — E[X,X(]B

Rearranging to solve for f:
E[X,Y;]| = EIX; X}]B

Assuming that the matrix E[X,X] is invertible, we can express the population regression
coefficient as:

s —1

B = (EX;X]]) EIX,Y] (5.3)
This expression shows that f is entirely determined by the joint distribution of (Y}, X7) in the
population.

The invertibility of E[X,;X}] is guaranteed if there is no perfect linear relationship among the
regressors. In particular, no pair of regressors should be perfectly correlated, and no regressor
should be a perfect linear combination of the other regressors.

OLS Estimation

Recall that we have estimated population moments like F[Y] and Var(Y) by their sample
counterparts, i.e. Y and %. This estimation principle is known as the method of moments,
where we replace population moments by their corresponding sample moments.

To estimate the population regression coefficient
-1
B = (EX,X]]) = EIX,Y]]

using a given i.i.d. sample (Y;,X}), i = 1,...,n, we replace all population moments by their
sample counterparts, i.e.,

-1
N 1 n , 1 n
p-(15xx) (inan)
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This can be simplified to the familiar form

~1
p- (Sxx) ().
=1 =1

or ,B = (X’X)"1X'Y, which is called the ordinary least squares (OLS) estimator.

5.5 Consistency

Recall that the law of large numbers for a univariate i.i.d. dataset Y;,...,Y,, states that the
sample average converges in probability to the population mean:

1 & P
=) Y, = E[Y] asn — oo.
ni:l

The OLS estimator is a function of two sample averages: the sample second moment matrix
LS X, X and the sample cross-moment vector = >""  X,V;.
i=1 ket n j=1** i1

If (Y;,X;), i =1,...,n, are i.i.d., then the multivariate version of the law of large numbers
applies:

Iy xx B exox) Ly x5 ey
n 1 n

% =1

This means that convergence in probability holds componentwise. Each element of the sample
moment matrix and vector converges to its corresponding population counterpart.

The continuous mapping theorem and Slutsky’s lemma enable us to extend these convergence
results to more complex expressions.

o If f(-) is a continuous function and V,, it ¢, then f(V,)) it f(c) (continuous mapping
theorem).

P P P
o If V, - cand W,, — d then V,,W,, — cd (Slutsky’s lemma).
Since matrix inversion is a continuous function, the continuous mapping theorem implies:

(5 ZXX) % (X))

Applying Slutsky’s lemma to combine the two convergence results yields:

—1
Ao (1 zxix;) (1 zxm)
n =1 n =1

5 (BIX. X)) EX,Y] = B.
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This establishes the consistency of the OLS estimator. We used the following regularity con-
ditions:

1) Random sampling: (Y}, X)) are i.i.d.

2) Exogeneity (mean independence): Efu;|X;] =0.

3) Finite second moments: E[Xf]] < o0 and E[Y?] < oo.
4) Full rank: E[X,X] is positive definite (hence invertible).

Neither normality nor homoskedasticity is required for consistency. Heteroskedasticity is fully
compatible with OLS consistency.

For any two random variables Y and Z, the Cauchy-Schwarz inequality states |E[Y Z]| <
VEY?|E[Z?). Specifically, [E[X;, Xy </ BIXZIEXG] and [E[X;, Y] </ E[XG]E[Y?]

Therefore, the finite second moment condition ensures that E[X,X] and E[X Y]] are finite.
The full rank condition ensures that E[X,X/]"! exists. Thus, the full rank and finite second
moments conditions ensure that 8 is well-defined.

The exogeneity condition is crucial for OLS consistency. Without it, the model is misspecified,
Equation 5.3 does not hold, and the OLS estimator would converge to the best linear predictor,
which is the * that minimizes E[(Y; — Xb)?].

Just as with the univariate law of large numbers, the i.i.d. assumption can be relaxed to
accommodate other sampling schemes. Under clustered sampling with independent clusters,
OLS consistency holds if the number of clusters grows large relative to cluster size as n — oc.
For time series data, (Y;, X}) must be stationary, and observations (Y;,X}) and (Y;_;, X] )
must become independent as j increases (strong mixing / weak dependence).

5.6 R Code

statistics-sec05.R
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