
5 Expectation

The expectation or expected value is the most important measure of the central tendency
of a distribution. It gives you the average value you can expect to get if you repeat the random
experiment multiple times. We define the expectation first for discrete random variables, then
continuous random variables, and finally give a unified definition for all random variables.

5.1 Discrete random variables

Recall that a discrete random variable 𝑌 is a variable that can take on a countable number of
distinct values. Each possible value 𝑎 has an associated probability 𝜋(𝑎) = 𝑃(𝑌 = 𝑎), known
as the probability mass function (PMF).

The support 𝒴 of 𝑌 is the set of all values that 𝑌 can take with non-zero probability:

𝒴 = {𝑎 ∈ ℝ ∶ 𝜋(𝑎) > 0}.

The total probability sums to 1: ∑𝑎∈𝒴 𝜋(𝑎) = 1.

The expectation or expected value of a discrete random variable 𝑌 with PMF 𝜋(⋅) and
support 𝒴 is defined as

𝐸[𝑌 ] = ∑
𝑢∈𝒴

𝑢𝜋(𝑢). (5.1)

The expected value of the variable education from the previous section is calculated by summing
over all possible values:

𝐸[𝑌 ] = 4 ⋅ 𝜋(4) + 10 ⋅ 𝜋(10) + 12 ⋅ 𝜋(12)
+ 13 ⋅ 𝜋(13) + 14 ⋅ 𝜋(14) + 16 ⋅ 𝜋(16)
+ 18 ⋅ 𝜋(18) + 21 ⋅ 𝜋(21) = 14.117

A binary or Bernoulli random variable 𝑌 takes on only two possible values: 0 and 1. The
support is 𝒴 = {0, 1}. The probabilities are

• 𝜋(1) = 𝑃(𝑌 = 1) = 𝑝
• 𝜋(0) = 𝑃(𝑌 = 0) = 1 − 𝑝
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for some 𝑝 ∈ (0, 1). The expected value of 𝑌 is:

𝐸[𝑌 ] = 0 ⋅ 𝜋(0) + 1 ⋅ 𝜋(1)
= 0 ⋅ (1 − 𝑝) + 1 ⋅ 𝑝
= 𝑝.

For the variable coin, the probability of heads is 𝑝 = 0.5 and the expected value is 𝐸[𝑌 ] = 𝑝 =
0.5.

5.2 Continuous random variables

For discrete random variables, both the PMF and the CDF characterize the distribution. For
continuous random variables, the PMF concept does not apply because the probability of any
specific point is zero. The continuous counterpart of the PMF is the density function:

Probability density function

The probability density function (PDF) or simply density function of a continuous
random variable 𝑌 with CDF 𝐹(𝑎) is a function 𝑓(𝑎) that satisfies

𝐹(𝑎) = ∫
𝑎

−∞
𝑓(𝑢) d𝑢

If the CDF is differentiable, the density 𝑓(𝑎) is its derivative:

𝑓(𝑎) = 𝑑
𝑑𝑎𝐹(𝑎).

Properties of a PDF:

(i) 𝑓(𝑎) ≥ 0 for all 𝑎 ∈ ℝ
(ii) ∫∞

−∞ 𝑓(𝑢) d𝑢 = 1

Probability rule for the PDF:

𝑃(𝑎 < 𝑌 < 𝑏) = ∫
𝑏

𝑎
𝑓(𝑢) d𝑢 = 𝐹(𝑏) − 𝐹(𝑎)

The expectation or expected value of a continuous random variable 𝑌 with PDF 𝑓(⋅) is

𝐸[𝑌 ] = ∫
∞

−∞
𝑢𝑓(𝑢) d𝑢. (5.2)
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Figure 5.1: CDF of wage

Figure 5.2: PDF of wage

The uniform distribution on the unit interval [0, 1] has the PDF

𝑓(𝑢) = {1 if 𝑢 ∈ [0, 1],
0 otherwise,

(5.3)

and the expected value of a uniformly distributed random variable 𝑌 is

𝐸[𝑌 ] = ∫
∞

−∞
𝑢𝑓(𝑢) d𝑢 = ∫

1

0
𝑢 d𝑢 = 1

2𝑢2 ∣
1

0
= 1

2.

5.3 Unified definition of the expected value

The expected value of a random variable 𝑌 can be defined in a unified way that applies to
both discrete and continuous cases by using its CDF 𝐹(𝑢):

𝐸[𝑌 ] = ∫
∞

−∞
𝑢 d𝐹(𝑢). (5.4)
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This integral, known as the Riemann-Stieltjes integral, generalizes the concept of integra-
tion to include functions that may not be smooth or differentiable everywhere.

For a continuous random variable with PDF 𝑓(𝑢), the CDF 𝐹(𝑢) is smooth and differentiable.
The relationship between the CDF and the PDF is:

d𝐹(𝑢) = 𝑓(𝑢) d𝑢.

Substituting this into our unified definition gives:

𝐸[𝑌 ] = ∫
∞

−∞
𝑢 d𝐹(𝑢)

= ∫
∞

−∞
𝑢𝑓(𝑢) d𝑢,

which matches the standard definition of the expected value for continuous random variables
as in Equation 5.2.

For a discrete random variable, the CDF 𝐹(𝑢) is a step function that increases in jumps at
the possible values 𝑢 ∈ 𝒴 that 𝑌 can take. The “change” or jump in the CDF at each 𝑢 ∈ 𝒴
is:

Δ𝐹(𝑢) = 𝐹(𝑢) − 𝐹(𝑢−) = 𝑃(𝑌 = 𝑢) = 𝜋(𝑢),
where 𝐹(𝑢−) is the value of 𝐹(𝑢) just before 𝑢, and 𝜋(𝑢) is the PMF of 𝑌 .

Integrating with respect to 𝐹(𝑢) simplifies to summing over these jumps:

𝐸[𝑌 ] = ∫
∞

−∞
𝑢 d𝐹(𝑢)

= ∑
𝑢∈𝒴

𝑢 Δ𝐹(𝑢)

= ∑
𝑢∈𝒴

𝑢𝜋(𝑢),

which aligns with the standard definition of the expected value for discrete random variables
as in Equation 5.1.

The unified definition 𝐸[𝑌 ] = ∫∞
−∞ 𝑢 d𝐹(𝑢) allows us to treat all types of random variables con-

sistently, whether the variable is discrete, continuous, or a mixture of both. It can also handle
non-standard cases such as distributions with CDFs that are not differentiable everywhere.

5.4 Transformed variables

We often transform random variables by taking, for instance, squares 𝑌 2 or logs log(𝑌 ). For
any transformation function 𝑔(⋅), the expectation of the transformed random variable 𝑔(𝑌 )
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is
𝐸[𝑔(𝑌 )] = ∫

∞

−∞
𝑔(𝑢) d𝐹(𝑢),

where 𝐹(𝑢) is the CDF of 𝑌 . As discussed in Section 5.3 for the different cases, d𝐹(𝑢) can be
replaced by the PMF or the PDF, i.e.,

∫
∞

−∞
𝑔(𝑢) d𝐹(𝑢) = {∑𝑢∈𝒴 𝑔(𝑢)𝜋(𝑢) if 𝑌 is discrete,

∫∞
−∞ 𝑔(𝑢)𝑓(𝑢)d𝑢 if 𝑌 is continuous.

For instance, if we take the coin variable 𝑌 and consider the transformed random variable
log(𝑌 + 1), the expected value is

𝐸[log(𝑌 + 1)] = log(1) ⋅ 1
2 + log(2) ⋅ 1

2 = log(2)
2

We can define the population counterparts of the sample moments and their centralized and
standardized versions:

• r-th moment of 𝑌 :
𝐸[𝑌 𝑟] = ∫

∞

−∞
𝑢𝑟 d𝐹(𝑢)

• r-th central moment:

𝐸[(𝑌 − 𝐸[𝑌 ])𝑟] = ∫
∞

−∞
(𝑢 − 𝐸[𝑌 ])𝑟 d𝐹(𝑢)

• Variance (2nd central moment):

𝑉 𝑎𝑟[𝑌 ] = 𝐸[(𝑌 − 𝐸[𝑌 ])2] = ∫
∞

−∞
(𝑢 − 𝐸[𝑌 ])2 d𝐹(𝑢)

• Standard deviation:
𝑠𝑑(𝑌 ) = √𝑉 𝑎𝑟[𝑌 ]

• r-th standardized moment:

𝐸[(𝑌 − 𝐸[𝑌 ]
𝑠𝑑(𝑌 ) )

𝑟
] = ∫

∞

−∞
(𝑢 − 𝐸[𝑌 ]

𝑠𝑑(𝑌 ) )
𝑟

d𝐹(𝑢)

• Skewness (3rd standardized moment):

𝑠𝑘𝑒𝑤(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ]
𝑠𝑑(𝑌 ) )

3
]

• Kurtosis (4th standardized moment):

𝑘𝑢𝑟𝑡(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ]
𝑠𝑑(𝑌 ) )

4
]
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5.5 Linearity of the expected value

The expected value is a linear function. For any 𝑎, 𝑏 ∈ ℝ, we have

𝐸[𝑎𝑌 + 𝑏] = 𝑎𝐸[𝑌 ] + 𝑏.

For the variance, the following rule applies:

𝑉 𝑎𝑟[𝑎𝑌 + 𝑏] = 𝑎2𝑉 𝑎𝑟[𝑌 ].

For any two random variables 𝑌 and 𝑍, we have

𝐸[𝑎𝑌 + 𝑏𝑍] = 𝑎𝐸[𝑌 ] + 𝑏𝐸[𝑍].

A similar result for the variance does not hold in general. However, if 𝑌 and 𝑍 are independent
random variables, we have

𝑉 𝑎𝑟[𝑎𝑌 + 𝑏𝑍] = 𝑎2𝑉 𝑎𝑟[𝑌 ] + 𝑏2𝑉 𝑎𝑟[𝑍]. (5.5)

5.6 Parameters and estimators

A parameter 𝜃 is a feature (function) of the population distribution 𝐹 of some random
variable 𝑌 . The expectation, variance, skewness, and kurtosis are parameters.

A statistic is a function of a sample 𝑌1, … , 𝑌𝑛. An estimator ̂𝜃 for 𝜃 is a statistic intended
as a guess about 𝜃. It is a function of the random variables 𝑌1, … , 𝑌𝑛 and, therefore, a random
variable as well. The sample mean, sample variance, sample skewness and sample kurtosis
are estimators. When an estimator ̂𝜃 is calculated in a specific realized sample, we call ̂𝜃 an
estimate.

5.7 Estimation of the mean

The expected value 𝐸[𝑌 ] is also called population mean because it is the population counter-
part of the sample mean 𝑌 = 1

𝑛 ∑𝑛
𝑖=1 𝑌𝑖, where the sample 𝑌1, … , 𝑌𝑛 is identically distributed

and has the same distribution as 𝑌 . In particular, we have:

𝐸[𝑌1] = … = 𝐸[𝑌𝑛] = 𝐸[𝑌 ].

The true population mean 𝐸[𝑌 ] is unknown in practice, but we can use the sample mean 𝑌
to estimate it. The sample mean is an unbiased estimator for the population mean because

𝐸[𝑌 ] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑌𝑖] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑌 ] = 𝐸[𝑌 ].
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The bias of an estimator is the expected value of the estimator minus the parameter to be
estimated. The bias of the sample mean is zero:

𝐵𝑖𝑎𝑠[𝑌 ] = 𝐸[𝑌 ] − 𝐸[𝑌 ] = 𝐸[𝑌 ] − 𝐸[𝑌 ] = 0.

When repeating random experiments and computing sample means, we can expect the sample
means to be distributed around the true population mean, with the population mean at the
center of this distribution.

To assess how large the spread around the true population mean is, we can compute the
variance:

𝑉 𝑎𝑟[𝑌 ] = 1
𝑛2 𝑉 𝑎𝑟[

𝑛
∑
𝑖=1

𝑌𝑖]

To simplify this term further, let’s assume that the sample is i.i.d. (independent and identically
distributed), i.e. the observations are randomly sampled from the population. Then, we can
apply Equation 5.5:

𝑉 𝑎𝑟[
𝑛

∑
𝑖=1

𝑌𝑖] =
𝑛

∑
𝑖=1

𝑉 𝑎𝑟[𝑌𝑖].

By the identical distribution of the sample, we have

𝑉 𝑎𝑟[𝑌1] = … = 𝑉 𝑎𝑟[𝑌𝑛] = 𝑉 𝑎𝑟[𝑌 ].

Therefore, the variance of the sample mean becomes:

𝑉 𝑎𝑟[𝑌 ] = 1
𝑛2

𝑛
∑
𝑖=1

𝑉 𝑎𝑟[𝑌𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝑉 𝑎𝑟[𝑌 ] = 𝑉 𝑎𝑟[𝑌 ]
𝑛 .

The spread of sample means around the true mean becomes smaller, the larger the sample size
𝑛 is. The more observations we have, the more precisely the sample mean can estimate the
true population mean.

5.8 Consistency

Good estimators get closer and closer to the true parameter being estimated as the sample
size 𝑛 increases, eventually returning the true parameter value in a hypothetically infinitely
large sample. This property is called consistency.

Consistency

An estimator ̂𝜃 is consistent for a true parameter 𝜃 if, for any 𝜖 > 0,

𝑃(| ̂𝜃 − 𝜃| > 𝜖) → 0 as 𝑛 → ∞.

68



Equivalently, consistency can be defined by the complementary event:

𝑃(| ̂𝜃 − 𝜃| ≤ 𝜖) → 1 as 𝑛 → ∞.

If ̂𝜃 is consistent, we say it converges in probability to 𝜃, denoted by

̂𝜃
𝑝

→ 𝜃 as 𝑛 → ∞.

If an estimator ̂𝜃 is a continuous random variable, it will almost never reach exactly the true
parameter value because point probabilities are zero: 𝑃( ̂𝜃 = 𝜃) = 0.

However, the larger the sample size, the higher should be the probability that ̂𝜃 is close to the
true value 𝜃. Consistency means that, if we fix some small precision value 𝜖 > 0, then,

𝑃(| ̂𝜃 − 𝜃| ≤ 𝜖) = 𝑃(𝜃 − 𝜖 ≤ ̂𝜃 ≤ 𝜃 + 𝜖)

should increase in the sample size 𝑛 and eventually reach 1.

An estimator is called inconsistent if it is not consistent. An inconsistent estimator is prac-
tically useless and leads to false inference. Therefore, it is important to verify that your
estimator is consistent.

To show whether an estimator is consistent, we can check the sufficient condition for consis-
tency:

Sufficient condition for consistency

Let ̂𝜃 be an estimator for some parameter 𝜃. The bias of ̂𝜃 is

𝐵𝑖𝑎𝑠[ ̂𝜃] = 𝐸[ ̂𝜃] − 𝜃.

If the bias and the variance of ̂𝜃 tends to zero for large sample sizes, i.e., if

i) 𝐵𝑖𝑎𝑠[ ̂𝜃] → 0 (as 𝑛 → ∞),
ii) 𝑉 𝑎𝑟[ ̂𝜃] → 0 (as 𝑛 → ∞),

then ̂𝜃 is consistent for 𝜃.

The reason for this sufficient condition is the fact that

𝑃(| ̂𝜃 − 𝜃| > 𝜖) ≤ 𝑉 𝑎𝑟[ ̂𝜃] + 𝐵𝑖𝑎𝑠[ ̂𝜃]2,

which follows from Markov’s inequality.
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5.9 Law of large numbers

The sample mean 𝑌 of an i.i.d. sample is consistent for the population mean 𝐸[𝑌 ] because

i) 𝐵𝑖𝑎𝑠[𝑌 ] = 0 for all 𝑛;
ii) 𝑉 𝑎𝑟[𝑌 ] = 𝑉 𝑎𝑟[𝑌 ]/𝑛 → 0, as 𝑛 → ∞, provided 𝑉 𝑎𝑟[𝑌 ] < ∞.

The consistency result of the sample mean is also known as the law of large numbers
(LLN):

𝑌
𝑝

→ 𝐸[𝑌 ] as 𝑛 → ∞.
Below is an interactive Shiny app to visualize the law of large numbers using simulated data
for different sample sizes and different distributions.

SHINY APP: LLN

5.10 Heavy tails

The sample mean of i.i.d. samples from most distributions is consistent. However, there are
some exceptional cases where consistency fails. For instance, the simple Pareto distribution
has the PDF

𝑓(𝑢) = {
1

𝑢2 if 𝑢 > 1,
0 if 𝑢 ≤ 1,

and the expected value is

𝐸[𝑋] = ∫
∞

−∞
𝑢𝑓(𝑢) d𝑢 = ∫

∞

1

1
𝑢 d𝑢 = log(𝑢)|∞1 = ∞.

The population mean is infinity, so the sample mean cannot converge and is inconsistent. The
game of chance from the St. Petersburg paradox (see https://en.wikipedia.org/wiki/St._Pete
rsburg_paradox) is an example of a discrete random variable with infinite expectation.

Another example is the t-distribution with 1 degree of freedom, also denoted as 𝑡1 or Cauchy
distribution, which has the PDF

𝑓(𝑢) = 1
𝜋(1 + 𝑢2) .

The lack of consistency of the sample mean from a 𝑡1 distribution is visualized in the shiny
application above.

The Pareto, St. Petersburg, and Cauchy distributions have infinite population mean, and the
sample mean of observations from these distributions is inconsistent. These are distributions
that produce huge outliers.
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There are other distributions that have a finite mean but an infinite variance, skewness, or
kurtosis.

For instance, the 𝑡2 distribution has a finite mean but an infinite variance. The 𝑡3 distribution
has a finite variance but an infinite skewness. The 𝑡4 distribution has a finite skewness but an
infinite kurtosis.

If 𝑌 is 𝑡𝑚-distributed (𝑡-distribution with 𝑚 degrees of freedom), then

𝐸[𝑌 ], 𝐸[𝑌 2], … , 𝐸[𝑌 𝑚−1] < ∞

but
𝐸[𝑌 𝑚] = 𝐸[𝑌 𝑚+1] = … = ∞.

Random variables with infinite first four moments have a so-called heavy-tailed distribution
and may produce huge outliers. Many statistical procedures are only valid if the underlying
distribution is not heavy-tailed.

5.11 Estimation of the variance

Consider an i.i.d. sample 𝑌1, … , 𝑌𝑛 from some population distribution with population mean
𝜇 = 𝐸[𝑌 ] and population variance 𝜎2 = 𝑉 𝑎𝑟[𝑌 ] < ∞.

We introduced two sample cointerparts of 𝜎2: the sample variance

�̂�2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2,

and the adjusted sample variance

𝑠2
𝑌 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 𝑛
𝑛 − 1�̂�2

𝑌 .

The sample variance can be decomposed as

�̂�2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝜇 + 𝜇 − 𝑌 )2

= 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝜇)2 + 2
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝜇)(𝜇 − 𝑌 ) + 1
𝑛

𝑛
∑
𝑖=1

(𝜇 − 𝑌 )2

= 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝜇)2 − 2(𝑌 − 𝜇)2 + (𝑌 − 𝜇)2

= 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝜇)2 − (𝑌 − 𝜇)2
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The mean of �̂�2
𝑌 is

𝐸[�̂�2
𝑌 ] = 1

𝑛
𝑛

∑
𝑖=1

𝐸[(𝑌𝑖 − 𝜇)2] − 𝐸[(𝑌 − 𝜇)2] = 1
𝑛

𝑛
∑
𝑖=1

𝑉 𝑎𝑟[𝑌𝑖] − 𝑉 𝑎𝑟[𝑌 ]

= 𝜎2 − 𝜎2

𝑛 = 𝑛 − 1
𝑛 𝜎2,

where we used the fact that 𝑉 𝑎𝑟[𝑌 ] = 𝜎2/𝑛.

The sample variance is downward biased:

𝐵𝑖𝑎𝑠[�̂�2
𝑌 ] = 𝐸[�̂�2

𝑌 ] − 𝜎2 = 𝑛 − 1
𝑛 𝜎2 − 𝜎2 = −𝜎2

𝑛 .

On the other hand, the adjusted sample variance is unbiased:

𝐵𝑖𝑎𝑠[𝑠2
𝑌 ] = 𝐸[𝑠2

𝑌 ] − 𝜎2 = 𝑛
𝑛 − 1𝐸[�̂�2

𝑌 ] − 𝜎2 = 𝜎2 − 𝜎2 = 0

The variance of the sample variance can be computed as

𝑉 𝑎𝑟[�̂�2
𝑌 ] = 𝜎4

𝑛 (𝑘𝑢𝑟𝑡 − 𝑛 − 3
𝑛 − 1)(𝑛 − 1)2

𝑛2 ,

while the variance of the adjusted sample variance is

𝑉 𝑎𝑟[𝑠2
𝑌 ] = 𝜎4

𝑛 (𝑘𝑢𝑟𝑡 − 𝑛 − 3
𝑛 − 1).

As long as the kurtosis of the underlying distribution is finite, the sufficient conditions for
consistency are satisfied as the bias and variance tend to zero as 𝑛 → ∞. The adjusted sample
variance is unbiased for any 𝑛. The sample variance is biased for fixed 𝑛 but asymptotically
unbiased as the bias tends to zero for large 𝑛. The sample variance and the adjusted sample
variance are consistent for the variance if the sample is i.i.d. and the distribution is not
heavy-tailed.

5.12 Bias-variance tradeoff

From a bias perspective, adjusted sample variance 𝑠2
𝑌 is preferred over �̂�2

𝑌 because 𝑠2
𝑌 is

unbiased. However, from a variance perspective, �̂�2
𝑌 is preferred due to its smaller variance.

Traditionally, the emphasis on unbiasedness has led to a preference for �̂�2
𝑌 , even at the cost of

a higher variance.
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A more modern approach balances bias and variance, known as the bias-variance tradeoff,
by selecting an estimator that minimizes the mean squared error (MSE):

𝑀𝑆𝐸( ̂𝜃) = 𝐸[( ̂𝜃 − 𝜃)2] = 𝑉 𝑎𝑟[ ̂𝜃] + 𝐵𝑖𝑎𝑠[ ̂𝜃]2.

For the variance estimators, the MSEs are

𝑀𝑆𝐸[�̂�2
𝑌 ] = 𝑉 𝑎𝑟[�̂�2

𝑌 ] + 𝐵𝑖𝑎𝑠[�̂�2
𝑌 ]2 = 𝜎4

𝑛 [(𝑘𝑢𝑟𝑡 − 𝑛 − 3
𝑛 − 1)(𝑛 − 1)2

𝑛2 + 1
𝑛]

and
𝑀𝑆𝐸[𝑠2

𝑌 ] = 𝑉 𝑎𝑟[𝑠2
𝑌 ] = 𝜎4

𝑛 (𝑘𝑢𝑟𝑡 − 𝑛 − 3
𝑛 − 1).

Since 𝑠2
𝑌 is unbiased, its MSE equals its variance.

It is not possible to universally determine which estimator has a lower MSE because this
depends on the population kurtosis (𝑘𝑢𝑟𝑡) of the underlying distribution. However, it can be
shown that for all distributions with 𝑘𝑢𝑟𝑡 ≥ 1.5, the relation 𝑀𝑆𝐸[𝑠2

𝑌 ] > 𝑀𝑆𝐸[�̂�2
𝑌 ] holds,

which implies that �̂�2
𝑌 is preferred based on the bias-variance tradeoff for all moderately tailed

distributions.

To give an indication of typical kurtosis values:

• Symmetric Bernoulli distribution with 𝑃(𝑌 = 0) = 𝑃(𝑌 = 1) = 0.5: kurtosis of 1
(light-tailed).

• Uniform distribution (see Equation 5.3): kurtosis of 1.8 (moderately light-tailed).
• Normal distribution: kurtosis of 3 (moderately tailed).
• 𝑡5 distribution: kurtosis of 9 (moderately heavy-tailed).
• 𝑡4 distribution: infinite kurtosis (heavy-tailed).

Therefore, according to the bias-variance tradeoff, the adjusted sample variance 𝑠2
𝑌 is preferred

only for extremely light-tailed distributions, while �̂�2
𝑌 is preferred in cases with moderate or

higher kurtosis.

In practice, especially with larger samples, the difference between 𝑠2
𝑌 and �̂�2

𝑌 becomes negli-
gible, and either estimator is generally acceptable. Therefore, the discussion about a better
variance estimator is a bit nitpicky and not of much practical relevance.

However, for instance in high-dimensional regression problems with near multicollinearity (𝑘 ≈
𝑛), the bias-variance tradeoff is crucial. In such cases, biased but low-variance estimators like
ridge or lasso (shrinkage estimators) are often preferred over ordinary least squares (OLS).

5.13 R-codes

statistics-sec05.R
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