6 Effects

6.1 Marginal Effects

Consider the regression model of hourly wage on education (years of schooling),
wage, = () + foedu; +u,;, i=1,...,n,
where the exogeneity assumption holds:
Elu,;|edy;] = 0.
The population regression function, which gives the conditional expectation of wage given
education, can be derived as:

m(edy;) = F [wagei|edui}
= By + B5 - edy; + Efu,;|edy;]
= 1 + By - edu,

Thus, the average wage level of all individuals with z years of schooling is:

m(z) =+ Py - 2.

Interpretation of Coefficients

In the linear regression model

the coefficient vector B captures the way the conditional mean of Y, changes with the
regressors X,;. Under the exogeneity assumption, we have

EY;|X;] = XiB =) + BoXio + .. + B Xy

This linearity allows for a simple interpretation. The coefficient 3; represents the partial
derivative of the conditional mean with respect to X;:

IELY;|X,]
0X;

j

= ;.
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This means that §; measures the marginal effect of a one-unit increase in X;; on the expected
value of Y}, holding all other variables constant.

If X;; is a dummy variable (i.e., binary), then (; measures the discrete change in E[Y;|X]
when X;; changes from 0 to 1.

For our wage-education example, the marginal effect of education is:

OE[wage,|edu,]
Oedu,

= f,.

This population marginal effect parameter can be estimated using OLS:

cps = read.csv("cps.csv")
lm(wage ~ education, data = cps)

Call:
Im(formula = wage ~ education, data = cps)

Coefficients:
(Intercept) education
-16.448 2.898

Interpretation: People with one more year of education are paid on average $2.90 USD more per
hour than people with one year less of education, assuming the exogeneity condition holds.

Correlation vs. Causation

The coefficient 3, describes the correlative relationship between education and wages, not
necessarily a causal one. To see this connection to correlation, consider the covariance of the
two variables:

Cov(wage,, edu;) = Cov(B; + B, - edu; + u;, edu,)
= Cov(f + By - edy;, edu;) + Cov(u,, eduy;)

The term Cov(u,, edu;) equals zero due to the exogeneity assumption. To see this, recall that
Elu;] = E[E[u;|edy;]] = 0 by the LIE, and similarly

Elu;edu;] = E[E[uedu;|edy;]] = E[E[u,;|edy;]edy;] = 0,
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which implies
Cov(u;,edu;) = Fluedy;] — Efu;] - Eledu;] =0
The coefficient 3, is thus proportional to the population correlation coeflicient:

Cov(wage,, edu,)
Var(edu;)

sd(wage,)

P = sd(edu;)

= Corr(wage,, edu;) -

The marginal effect is a correlative effect and does not necessarily reveal the source of the
higher wage levels for people with more education.

Regression relationships do not necessarily imply causal relationships.

People with more education may earn more for various reasons:

e They might be naturally more talented or capable

e They might come from wealthier families with better connections
o They might have access to better resources and opportunities

o Education itself might actually increase productivity and earnings

_
N

Figure 6.1: A DAG (directed acyclic graph) showing potential confounding factors in the
education-wage relationship

The coefficient 5, measures how strongly education and earnings are correlated, but this
association could be due to other factors that correlate with both wages and education, such
as:

o Family background (parental education, family income, ethnicity)
o Personal background (gender, intelligence, motivation)

Remember: Correlation does not imply causation!
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Omitted Variable Bias

To understand the causal effect of an additional year of education on wages, it is crucial to
consider the influence of family and personal background. These factors, if not included in our
analysis, are known as omitted variables. An omitted variable is one that:

(i) is correlated with the dependent variable (wage,, in this scenario)
(ii) is correlated with the regressor of interest (edu;)

(iii) is omitted in the regression

The presence of omitted variables means that we cannot be sure that the regression relationship
between education and wages is purely causal. We say that we have omitted variable bias
for the causal effect of the regressor of interest.

The coefficient 3, in the simple regression model measures the correlative or marginal effect, not
the causal effect. This must always be kept in mind when interpreting regression coefficients.

Control Variables

We can include control variables in the linear regression model to reduce omitted variable
bias so that we can interpret (3, as a ceteris paribus marginal effect (ceteris paribus means
holding other variables constant).

For example, let’s include years of experience as well as ethnic identity and gender dummy
variables for Black and female:

wage, = () + fyedu; 4 Bzexper; + B,Black; 4 Bsfem; + u;.

In this case,
OE[wage,|edu,, exper,, Black,, fem,]

Oedu;

is the marginal effect of education on expected wages, holding experience, ethnic identity, and
gender fixed.

By =

lm(wage ~ education + experience + Black + female, data = cps)

Call:
Im(formula = wage ~ education + experience + Black + female,
data = cps)
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Coefficients:
(Intercept) education  experience Black female
-21.7089 3.1350 0.2443 -2.8554 -7.4363

Interpretation of coefficients:

Education: Given the same experience, ethnic identity (whether the individual identifies
as Black), and gender, people with one more year of education are paid on average $3.14
USD more than people with one year less of education.

Experience: Each additional year of experience is associated with an average wage
increase of $0.24 USD per hour, holding other factors constant.

Black: Black workers earn on average $2.86 USD less per hour than non-Black workers
with the same education, experience, and gender.

Female: Women earn on average $7.43 USD less per hour than men with the same
education, experience, and ethnic identity.

Note: This regression does not control for other unobservable characteristics (such as ability)
or variables not included in the regression (such as quality of education), so omitted variable
bias may still be present.

Good vs. Bad Controls

It’s important to recognize that control variables are always selected with respect to a par-
ticular regressor of interest. A researcher typically focuses on estimating the effect of one
specific variable (like education), and control variables must be designed specifically for this
relationship.

In causal inference terminology, we can distinguish between different types of variables:

Confounders: Variables that affect both the regressor of interest and the outcome.
These are good controls because they help isolate the causal effect of interest.
Mediators: Variables through which the regressor of interest affects the outcome. Con-
trolling for mediators can block part of the causal effect we're trying to estimate.
Colliders: Variables that are affected by both the regressor of interest and the outcome
(or by factors that determine the outcome). Controlling for colliders can create spurious
associations.

Confounders

Examples of good controls (confounders) for education are:

Parental education level (affects both a person’s education and their wage potential)
Region of residence (geographic factors can influence education access and job markets)
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o Family socioeconomic background (affects educational opportunities and wage potential)

<

Figure 6.2: A DAG of the education-wage relationship with a family confounder

Mediators and Colliders

Examples of bad controls include:
e Mediators: Variables that are part of the causal pathway from education to wages

— Current job position (education — job position — wage)
— Professional sector (education may determine which sector someone works in)
— Number of professional certifications (likely a result of education level)

<

Figure 6.3: A DAG of the education-wage relationship with job position mediator

o Colliders: Variables affected by both education and wages (or their determinants)
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— Happiness/life satisfaction (might be affected independently by both education and
wages)
— Work-life balance (both education and wages might affect this independently)

Figure 6.4: A DAG of the education-wage relationship with happiness collider

Bad controls create two problems:

1. Statistical issue: High correlation with the variable of interest (like education) causes
high variance in the coefficient estimate (high collinearity).

2. Causal inference issue: They distort the relationship we’re trying to estimate by either
blocking part of the causal effect (mediators) or creating artificial associations (colliders).

Good control variables are typically determined before the level of education is determined,
while bad controls are often outcomes of the education process itself or are jointly determined
with wages.

The appropriate choice of control variables requires not just statistical knowledge but also
subject-matter expertise about the causal structure of the relationships being studied.

6.2 Application: Class Size Effect

Let’s apply these concepts to a real-world research question: How does class size affect student
performance?

Recall the CASchools dataset used in the Stock and Watson textbook, which contains infor-
mation on California school characteristics:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2
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We are interested in the effect of the student-teacher ratio STR (class size) on the average
test score score. Following our previous discussion on causal inference, we need to consider
potential confounding factors that might affect both class sizes and test scores.

Control Strategy

Let’s examine several control variables:

e english: proportion of students whose primary language is not English.
o lunch: proportion of students eligible for free/reduced-price meals.
e expenditure: total expenditure per pupil.

First, we should check whether these variables are correlated with both our regressor of interest
(STR) and the outcome (score):

library(dplyr)
CASchools [> select(STR, score, english, lunch, expenditure) [> cor()

STR score english lunch expenditure
STR 1.0000000 -0.2263627 0.18764237 0.13520340 -0.61998216
score -0.2263627 1.0000000 -0.64412381 -0.86877199 0.19127276
english 0.1876424 -0.6441238 1.00000000 0.65306072 -0.07139604
lunch 0.1352034 -0.8687720 0.65306072 1.00000000 -0.06103871

expenditure -0.6199822 0.1912728 -0.07139604 -0.06103871 1.00000000

The correlation matrix reveals that english, lunch, and expenditure are indeed correlated
with both STR and score. This suggests they could be confounders that, if omitted, might
bias our estimate of the class size effect.

Let’s implement a control strategy, adding potential confounders one by one to see how the
estimated marginal effect of class size changes:

fitl = 1lm(score ~ STR, data = CASchools)
fit2 = Im(score ~ STR + english, data = CASchools)
fit3 = lm(score ~ STR + english + lunch, data = CASchools)
fit4 = Im(score ~ STR + english + lunch + expenditure, data = CASchools)
library(modelsummary)
mymodels = list(fitl, fit2, fit3, fit4)
modelsummary (mymodels,
statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))
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(1) (2) (3) (4)
(Intercept) — 698.933 686.032 700.150 665.988

STR —2.280 —1.101 —0.998 —0.235
english —0.650 —0.122 —0.128
lunch —0.547  —0.546
expenditure 0.004
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
RMSE 18.54 14.41 9.04 8.86

Interpretation of Marginal Effects

Let’s interpret the coefficients on STR from each model more precisely:

o Model (1): Between two classes that differ by one student, the class with more students
scores on average 2.280 points lower. This represents the unadjusted association without
controlling for any confounding factors.

o Model (2): Between two classes that differ by one student but have the same share of
English learners, the larger class scores on average 1.101 points lower. Controlling for
English learner status cuts the estimated effect by more than half.

o Model (3): Between two classes that differ by one student but have the same share
of English learners and and the same share of students eligible for reduced-price meals,
the larger class scores on average 0.998 points lower. Adding this socioeconomic control
further reduces the estimated effect slightly.

o Model (4): Between two classes that differ by one student but have the same share
of English learners, students with reduced meals, and per-pupil expenditure, the larger
class scores on average 0.235 points lower. This represents a dramatic reduction from
the previous model.

The sequential addition of controls demonstrates how sensitive the estimated marginal effect
is to model specification. Each coefficient represents the partial derivative of the expected test
score with respect to the student-teacher ratio, holding constant the variables included in that
particular model.
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Identifying Good and Bad Controls

Based on our causal framework from the previous section, we can evaluate our control vari-
ables:

o Confounders (good controls): english and lunch are likely good controls because
they represent pre-existing student characteristics that influence both class size assign-
ments and test performance. For instance, schools with a higher share of immigrants
or lower-income households may have on average higher class sizes and lower reading
scores.

STR < english — score

o Mediator (bad control): expenditure appears to be a bad control because it’s
likely a mediator in the causal pathway from class size to test scores. Smaller classes
mechanically increase per-pupil expenditure through higher teacher salary costs per stu-
dent.

STR — expenditure — score

When we control for expenditure, we block this causal pathway and “control away” part of
the effect of STR on score we actually want to measure. This explains the dramatic drop in
the coefficient in Model (4) and suggests this model likely underestimates the true effect of
class size.

This application demonstrates the crucial importance of thoughtful control variable selection
in regression analysis. The estimated marginal effect of STR on score varies substantially
depending on which variables we control for. Based on causal reasoning, we should prefer
Model (3) with the appropriate confounders but without the mediator.

6.3 Polynomials

Experience and wages

A linear dependence of wages and experience is a strong assumption. We can reasonably
expect a nonlinear marginal effect of another year of experience on wages. For example, the
effect may be higher for workers with 5 years of experience than for those with 40 years of
experience.

Polynomials can be used to specify a nonlinear regression function:

wage, = 31 + [yexper; + B3exper? + B4experf + u;.
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## we focus on people with Asian background only for illustration

cps.as = cps |> subset(Asian == 1)

fit = Im(wage ~ experience + I(experience”2) + I(experience”3),
data = cps.as)

beta = fit$coefficients

beta |> round(4)

(Intercept) experience I(experience”2) I(experience”3)
20.4159 1.2067 -0.0449 0.0004

## Scatterplot
plot(wage ~ experience, data = cps.as, ylim = c(0,100))
## plot the cubic function for fitted wages
curve (
betal[l] + beta[2]*x + betal[3]*x"2 + betal[4]*x"3,
from = 0, to = 70, add=TRUE, col='red', 1lwd=2
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The marginal effect depends on the years of experience:

OE[wage, |exper,]

Bexpor = By + 233exper, + 3ﬁ4exper?.

For instance, the additional wage for a worker with 11 years of experience compared to a
worker with 10 years of experience is on average

1.2013 + 2 - (—0.0447) - 10 + 3 - 0.0004 - 102 = 0.4273.
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Income and test scores

Another example is the relationship between the income of schooling districts and their test
scores.

Income and test score are positively correlated:

cor (CASchools$income, CASchools$score)

[1] 0.7124308

School districts with above-average income tend to achieve above-average test scores. But
does a linear regression adequately model the data? Let’s compare a linear with a quadratic
regression specification.

linear = Im(score ~ income, data = CASchools)
linear

Call:
Im(formula = score ~ income, data = CASchools)

Coefficients:
(Intercept) income
625.384 1.879

Estimated linear regression function:

score = 625.4 + 1.88inc.

quad = lm(score ~ income + I(income~2), data = CASchools)
quad

Call:
Im(formula = score ~ income + I(income”2), data = CASchools)

Coefficients:
(Intercept) income I(income~2)
607.30174 3.85099 -0.04231
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Estimated quadratic regression function:

score = 607.3 + 3.85inc — 0.0423 inc?.

# Create scatterplot

plot(score ~ income, data = CASchools,
xlab = "District Income (thousands)",
ylab = "Test Score")

# Add fitted curves
curve(coef (linear) [1] + coef(linear) [2]*x, add = TRUE, col = "red", lwd=2)
curve (coef (quad) [1] + coef(quad) [2]*x + coef(quad) [3]1*x"2, add = TRUE, col = "blue", lwd=2)

# Add legend
legend ("bottomright", c("Quadratic", "Linear"), col = c("blue", "red"), lwd = 2)
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The plot shows that the linear regression line seems to overestimate the true relationship when
income is either very high or very low and it tends to underestimate it for the middle income
group.

The quadratic function appears to provide a better fit to the data compared to the linear
function.
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6.4 Logarithms

Log-income and test scores

Another approach to estimate a concave nonlinear regression function involves using a loga-
rithmic regressor.

# estimate a linear-log model
linlog = 1m(score ~ log(income), data = CASchools)
linlog

Call:
Im(formula = score ~ log(income), data = CASchools)

Coefficients:
(Intercept) log(income)
557.83 36.42

The estimated regression function is

score = 557.8 + 36.42 log(inc)

# Create scatterplot

plot(score ~ income, data = CASchools,
xlab = "District Income (thousands)",
ylab = "Test Score")

# Add fitted curves
curve (coef (linlog) [1] + coef(linlog) [2]*log(x), add = TRUE, col = "blue", lwd = 2)
curve (coef (linear) [1] + coef(linear) [2]*x, add = TRUE, col = "red", lwd = 2)

# Add legend
legend ("bottomright", c("Linear-log", "Linear"), col = c("blue", "red"), lwd = 2)
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linear quad linlog

(Intercept)  625.384 607.302 557.832

income 1.879 3.851
I(income™2) —0.042
log(income) 36.420
Num.Obs. 420 420 420
R2 0.508 0.556 0.563
R2 Adj. 0.506 0.554 0.561
RMSE 13.35 12.68 12.59
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library(modelsummary)

modelsummary(list("linear" = linear, "quad" = quad, "linlog" = linlog),
statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))

We observe that the adjusted R-squared is highest for the logarithmic model, indicating that
the latter is the most suitable.

The coefficients have a different interpretation.
¢ Assuming the linear model specification is correct, we have
Elscore|inc] = 3, + f,inc.
The marginal effect of income on score is

OF|[score|inc] 5
e B,

odinc
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Students from a district with $1000 higher income have on average 1.879 points higher
scores.
e Assuming the quadratic model specification is correct, we have

E[score|inc] = f; 4 fyinc + fsinc’.
The marginal effect income on score depends on the income level:

O0FE|[scorelinc] )
ome By + 2B5inc.
When considering a district with x income, students with $1000 higher income have on
average 3.85 - 0.0846x points higher scores.
e Assuming the logarithmic model specification is correct, we have
El[scorelinc] = 5, + 5, log(inc).
The slope coefficient represents the marginal effect of log(income) on score:

OF|[score|inc]

0log(inc) = b2
Instead, the marginal effect of income on score is
O0FE|[scorelinc] 1
8.— = ﬂ2 )
inc inc
SO 5i
O0E[score|inc] = f, - ‘1nc
—_— inc

absolute change percentage change

Students from a district with 1% higher income have on average 36.42 - 1% = 0.3642
points higher scores.

Education and log-wages

If a convex relationship is expected, we can also use a logarithmic transformation for the
dependent variable:

log(wage,) = 3 + Byedu; + u;

log_model = 1lm(log(wage) ~ education, data = cps.as)

linear_model = Ilm(wage ~ education, data = cps.as)

plot(wage ~ education, data = cps.as, ylim = c(0,80), x1lim = c(4,22))
abline(linear_model, col="blue")

coef = coefficients(log_model)

curve (exp(coef [1]+coef [2] *x), add=TRUE, col="red")
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The marginal effect of education on log(wage) is

OE[log(wage,)|edu,]
Oedu;

= fy.

To interpret (B, in terms of changes of wage instead of log(wage), consider the following
approximation:
Elwage, |edu;] ~ exp(E[log(wage,)|edu,]).

The left-hand expression is the conventional conditional mean, and the right-hand expression
is the geometric mean. The geometric mean is slightly smaller because E[log(Y)] < log(E[Y]),
but this difference is small unless the data is highly skewed.

The marginal effect of a change in edu on the geometric mean of wage is

Oexp(E[log(wage,)|edu;])
Oedu;

= exp(E[log(wage;)|edu,]) - 8.

outer derivative

Using the geometric mean approximation from above, we get

OE[wage,|edu;]  Odexp(E[log(wage,)|edu;])

~ =2 = B, - dedu, .

Elwage, |edu,] exp(Ellog(wage;)|edu,]) ’ absolute
solu

percentage change

change

log_model
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Call:
Im(formula = log(wage) ~ education, data = cps.as)

Coefficients:
(Intercept) education
1.3783 0.1113

Interpretation: A person with one more year of education has a wage that is 11.13% higher on
average.

In addition to the linear-log and log-linear specifications, we also have the log-log specifica-
tion
log(Y) = By + B;log(X) + u.

Log-log interpretation: When X is 1% higher, we observe, on average, a (3,% higher Y.

6.5 Interactions

A linear regression with interaction terms:

wage, = 31 + Byedu; + Bifem; + Bymarr; + B5 (marr; - fem;) + u;

Im(wage ~ education + female + married + married:female, data = cps)

Call:
Im(formula = wage ~ education + female + married + married:female,
data = cps)
Coefficients:
(Intercept) education female married female:married

-18.241 2.877 -3.025 7.352 -6.016

The marginal effect of gender depends on the person’s marital status:

O0E[wage, |edu,, fem;, marr,]
Ofem,;

= (3 + Bymarr;

Since female is a dummy variable, we interpret the marginal effect as a discrete 0 — 1 change
(ceteris paribus), not literally a derivative.
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Interpretation: Given the same education, unmarried women are paid on average 3.27 USD
less than unmarried men, and married women are paid on average 3.27+5.77=9.04 USD less
than married men.

The marginal effect of the marital status depends on the person’s gender:

0E[wage |edu;, fem;, marr,]

- fomn.
Omarr, By + Pstem,

Interpretation: Given the same education, married men are paid on average 7.17 USD more
than unmarried men, and married women are paid on average 7.17-5.77=1.40 USD more than
unmarried women.

6.6 R Code

statistics-sec06.R
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