
6 Effects

6.1 Marginal Effects

Consider the regression model of hourly wage on education (years of schooling),

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝑢𝑖, 𝑖 = 1, … , 𝑛,

where the exogeneity assumption holds:

𝐸[𝑢𝑖|edu𝑖] = 0.

The population regression function, which gives the conditional expectation of wage given
education, can be derived as:

𝑚(edu𝑖) = 𝐸[wage𝑖|edu𝑖]
= 𝛽1 + 𝛽2 ⋅ edu𝑖 + 𝐸[𝑢𝑖|edu𝑖]
= 𝛽1 + 𝛽2 ⋅ edu𝑖

Thus, the average wage level of all individuals with 𝑧 years of schooling is:

𝑚(𝑧) = 𝛽1 + 𝛽2 ⋅ 𝑧.

Interpretation of Coefficients

In the linear regression model
𝑌𝑖 = 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 + 𝑢𝑖,
the coefficient vector 𝛽𝛽𝛽 captures the way the conditional mean of 𝑌𝑖 changes with the
regressors 𝑋𝑋𝑋𝑖. Under the exogeneity assumption, we have

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 = 𝛽1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘.

This linearity allows for a simple interpretation. The coefficient 𝛽𝑗 represents the partial
derivative of the conditional mean with respect to 𝑋𝑖𝑗:

𝜕𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖]
𝜕𝑋𝑖𝑗

= 𝛽𝑗.
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This means that 𝛽𝑗 measures the marginal effect of a one-unit increase in 𝑋𝑖𝑗 on the expected
value of 𝑌𝑖, holding all other variables constant.

If 𝑋𝑖𝑗 is a dummy variable (i.e., binary), then 𝛽𝑗 measures the discrete change in 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖]
when 𝑋𝑖𝑗 changes from 0 to 1.

For our wage-education example, the marginal effect of education is:

𝜕𝐸[wage𝑖|edu𝑖]
𝜕edu𝑖

= 𝛽2.

This population marginal effect parameter can be estimated using OLS:

cps = read.csv("cps.csv")
lm(wage ~ education, data = cps)

Call:
lm(formula = wage ~ education, data = cps)

Coefficients:
(Intercept) education

-16.448 2.898

Interpretation: People with one more year of education are paid on average $2.90 USD more per
hour than people with one year less of education, assuming the exogeneity condition holds.

Correlation vs. Causation

The coefficient 𝛽2 describes the correlative relationship between education and wages, not
necessarily a causal one. To see this connection to correlation, consider the covariance of the
two variables:

𝐶𝑜𝑣(wage𝑖, edu𝑖) = 𝐶𝑜𝑣(𝛽1 + 𝛽2 ⋅ edu𝑖 + 𝑢𝑖, edu𝑖)
= 𝐶𝑜𝑣(𝛽1 + 𝛽2 ⋅ edu𝑖, edu𝑖) + 𝐶𝑜𝑣(𝑢𝑖, edu𝑖)

The term 𝐶𝑜𝑣(𝑢𝑖, edu𝑖) equals zero due to the exogeneity assumption. To see this, recall that
𝐸[𝑢𝑖] = 𝐸[𝐸[𝑢𝑖|edu𝑖]] = 0 by the LIE, and similarly

𝐸[𝑢𝑖edu𝑖] = 𝐸[𝐸[𝑢𝑖edu𝑖|edu𝑖]] = 𝐸[𝐸[𝑢𝑖|edu𝑖]edu𝑖] = 0,
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which implies
𝐶𝑜𝑣(𝑢𝑖, edu𝑖) = 𝐸[𝑢𝑖edu𝑖] − 𝐸[𝑢𝑖] ⋅ 𝐸[edu𝑖] = 0

The coefficient 𝛽2 is thus proportional to the population correlation coefficient:

𝛽2 = 𝐶𝑜𝑣(wage𝑖, edu𝑖)
𝑉 𝑎𝑟(edu𝑖)

= 𝐶𝑜𝑟𝑟(wage𝑖, edu𝑖) ⋅ 𝑠𝑑(wage𝑖)
𝑠𝑑(edu𝑖)

.

The marginal effect is a correlative effect and does not necessarily reveal the source of the
higher wage levels for people with more education.

Regression relationships do not necessarily imply causal relationships.

People with more education may earn more for various reasons:

• They might be naturally more talented or capable
• They might come from wealthier families with better connections
• They might have access to better resources and opportunities
• Education itself might actually increase productivity and earnings

Figure 6.1: A DAG (directed acyclic graph) showing potential confounding factors in the
education-wage relationship

The coefficient 𝛽2 measures how strongly education and earnings are correlated, but this
association could be due to other factors that correlate with both wages and education, such
as:

• Family background (parental education, family income, ethnicity)
• Personal background (gender, intelligence, motivation)

Remember: Correlation does not imply causation!
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Omitted Variable Bias

To understand the causal effect of an additional year of education on wages, it is crucial to
consider the influence of family and personal background. These factors, if not included in our
analysis, are known as omitted variables. An omitted variable is one that:

(i) is correlated with the dependent variable (wage𝑖, in this scenario)

(ii) is correlated with the regressor of interest (edu𝑖)

(iii) is omitted in the regression

The presence of omitted variables means that we cannot be sure that the regression relationship
between education and wages is purely causal. We say that we have omitted variable bias
for the causal effect of the regressor of interest.

The coefficient 𝛽2 in the simple regression model measures the correlative or marginal effect, not
the causal effect. This must always be kept in mind when interpreting regression coefficients.

Control Variables

We can include control variables in the linear regression model to reduce omitted variable
bias so that we can interpret 𝛽2 as a ceteris paribus marginal effect (ceteris paribus means
holding other variables constant).

For example, let’s include years of experience as well as ethnic identity and gender dummy
variables for Black and female:

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3exper𝑖 + 𝛽4Black𝑖 + 𝛽5fem𝑖 + 𝑢𝑖.

In this case,

𝛽2 = 𝜕𝐸[wage𝑖|edu𝑖, exper𝑖, Black𝑖, fem𝑖]
𝜕edu𝑖

is the marginal effect of education on expected wages, holding experience, ethnic identity, and
gender fixed.

lm(wage ~ education + experience + Black + female, data = cps)

Call:
lm(formula = wage ~ education + experience + Black + female,

data = cps)
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Coefficients:
(Intercept) education experience Black female

-21.7089 3.1350 0.2443 -2.8554 -7.4363

Interpretation of coefficients:

• Education: Given the same experience, ethnic identity (whether the individual identifies
as Black), and gender, people with one more year of education are paid on average $3.14
USD more than people with one year less of education.

• Experience: Each additional year of experience is associated with an average wage
increase of $0.24 USD per hour, holding other factors constant.

• Black: Black workers earn on average $2.86 USD less per hour than non-Black workers
with the same education, experience, and gender.

• Female: Women earn on average $7.43 USD less per hour than men with the same
education, experience, and ethnic identity.

Note: This regression does not control for other unobservable characteristics (such as ability)
or variables not included in the regression (such as quality of education), so omitted variable
bias may still be present.

Good vs. Bad Controls

It’s important to recognize that control variables are always selected with respect to a par-
ticular regressor of interest. A researcher typically focuses on estimating the effect of one
specific variable (like education), and control variables must be designed specifically for this
relationship.

In causal inference terminology, we can distinguish between different types of variables:

• Confounders: Variables that affect both the regressor of interest and the outcome.
These are good controls because they help isolate the causal effect of interest.

• Mediators: Variables through which the regressor of interest affects the outcome. Con-
trolling for mediators can block part of the causal effect we’re trying to estimate.

• Colliders: Variables that are affected by both the regressor of interest and the outcome
(or by factors that determine the outcome). Controlling for colliders can create spurious
associations.

Confounders

Examples of good controls (confounders) for education are:

• Parental education level (affects both a person’s education and their wage potential)
• Region of residence (geographic factors can influence education access and job markets)
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• Family socioeconomic background (affects educational opportunities and wage potential)

Figure 6.2: A DAG of the education-wage relationship with a family confounder

Mediators and Colliders

Examples of bad controls include:

• Mediators: Variables that are part of the causal pathway from education to wages

– Current job position (education → job position → wage)
– Professional sector (education may determine which sector someone works in)
– Number of professional certifications (likely a result of education level)

Figure 6.3: A DAG of the education-wage relationship with job position mediator

• Colliders: Variables affected by both education and wages (or their determinants)
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– Happiness/life satisfaction (might be affected independently by both education and
wages)

– Work-life balance (both education and wages might affect this independently)

Figure 6.4: A DAG of the education-wage relationship with happiness collider

Bad controls create two problems:

1. Statistical issue: High correlation with the variable of interest (like education) causes
high variance in the coefficient estimate (high collinearity).

2. Causal inference issue: They distort the relationship we’re trying to estimate by either
blocking part of the causal effect (mediators) or creating artificial associations (colliders).

Good control variables are typically determined before the level of education is determined,
while bad controls are often outcomes of the education process itself or are jointly determined
with wages.

The appropriate choice of control variables requires not just statistical knowledge but also
subject-matter expertise about the causal structure of the relationships being studied.

6.2 Application: Class Size Effect

Let’s apply these concepts to a real-world research question: How does class size affect student
performance?

Recall the CASchools dataset used in the Stock and Watson textbook, which contains infor-
mation on California school characteristics:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2
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We are interested in the effect of the student-teacher ratio STR (class size) on the average
test score score. Following our previous discussion on causal inference, we need to consider
potential confounding factors that might affect both class sizes and test scores.

Control Strategy

Let’s examine several control variables:

• english: proportion of students whose primary language is not English.
• lunch: proportion of students eligible for free/reduced-price meals.
• expenditure: total expenditure per pupil.

First, we should check whether these variables are correlated with both our regressor of interest
(STR) and the outcome (score):

library(dplyr)
CASchools |> select(STR, score, english, lunch, expenditure) |> cor()

STR score english lunch expenditure
STR 1.0000000 -0.2263627 0.18764237 0.13520340 -0.61998216
score -0.2263627 1.0000000 -0.64412381 -0.86877199 0.19127276
english 0.1876424 -0.6441238 1.00000000 0.65306072 -0.07139604
lunch 0.1352034 -0.8687720 0.65306072 1.00000000 -0.06103871
expenditure -0.6199822 0.1912728 -0.07139604 -0.06103871 1.00000000

The correlation matrix reveals that english, lunch, and expenditure are indeed correlated
with both STR and score. This suggests they could be confounders that, if omitted, might
bias our estimate of the class size effect.

Let’s implement a control strategy, adding potential confounders one by one to see how the
estimated marginal effect of class size changes:

fit1 = lm(score ~ STR, data = CASchools)
fit2 = lm(score ~ STR + english, data = CASchools)
fit3 = lm(score ~ STR + english + lunch, data = CASchools)
fit4 = lm(score ~ STR + english + lunch + expenditure, data = CASchools)
library(modelsummary)
mymodels = list(fit1, fit2, fit3, fit4)
modelsummary(mymodels,

statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))
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(1) (2) (3) (4)
(Intercept) 698.933 686.032 700.150 665.988
STR −2.280 −1.101 −0.998 −0.235
english −0.650 −0.122 −0.128
lunch −0.547 −0.546
expenditure 0.004
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
RMSE 18.54 14.41 9.04 8.86

Interpretation of Marginal Effects

Let’s interpret the coefficients on STR from each model more precisely:

• Model (1): Between two classes that differ by one student, the class with more students
scores on average 2.280 points lower. This represents the unadjusted association without
controlling for any confounding factors.

• Model (2): Between two classes that differ by one student but have the same share of
English learners, the larger class scores on average 1.101 points lower. Controlling for
English learner status cuts the estimated effect by more than half.

• Model (3): Between two classes that differ by one student but have the same share
of English learners and and the same share of students eligible for reduced-price meals,
the larger class scores on average 0.998 points lower. Adding this socioeconomic control
further reduces the estimated effect slightly.

• Model (4): Between two classes that differ by one student but have the same share
of English learners, students with reduced meals, and per-pupil expenditure, the larger
class scores on average 0.235 points lower. This represents a dramatic reduction from
the previous model.

The sequential addition of controls demonstrates how sensitive the estimated marginal effect
is to model specification. Each coefficient represents the partial derivative of the expected test
score with respect to the student-teacher ratio, holding constant the variables included in that
particular model.
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Identifying Good and Bad Controls

Based on our causal framework from the previous section, we can evaluate our control vari-
ables:

• Confounders (good controls): english and lunch are likely good controls because
they represent pre-existing student characteristics that influence both class size assign-
ments and test performance. For instance, schools with a higher share of immigrants
or lower-income households may have on average higher class sizes and lower reading
scores.

STR ← english → score

• Mediator (bad control): expenditure appears to be a bad control because it’s
likely a mediator in the causal pathway from class size to test scores. Smaller classes
mechanically increase per-pupil expenditure through higher teacher salary costs per stu-
dent.

STR → expenditure → score

When we control for expenditure, we block this causal pathway and “control away” part of
the effect of STR on score we actually want to measure. This explains the dramatic drop in
the coefficient in Model (4) and suggests this model likely underestimates the true effect of
class size.

This application demonstrates the crucial importance of thoughtful control variable selection
in regression analysis. The estimated marginal effect of STR on score varies substantially
depending on which variables we control for. Based on causal reasoning, we should prefer
Model (3) with the appropriate confounders but without the mediator.

6.3 Polynomials

Experience and wages

A linear dependence of wages and experience is a strong assumption. We can reasonably
expect a nonlinear marginal effect of another year of experience on wages. For example, the
effect may be higher for workers with 5 years of experience than for those with 40 years of
experience.

Polynomials can be used to specify a nonlinear regression function:

wage𝑖 = 𝛽1 + 𝛽2exper𝑖 + 𝛽3exper2
𝑖 + 𝛽4exper3

𝑖 + 𝑢𝑖.
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## we focus on people with Asian background only for illustration
cps.as = cps |> subset(Asian == 1)
fit = lm(wage ~ experience + I(experience^2) + I(experience^3),

data = cps.as)
beta = fit$coefficients
beta |> round(4)

(Intercept) experience I(experience^2) I(experience^3)
20.4159 1.2067 -0.0449 0.0004

## Scatterplot
plot(wage ~ experience, data = cps.as, ylim = c(0,100))
## plot the cubic function for fitted wages
curve(
beta[1] + beta[2]*x + beta[3]*x^2 + beta[4]*x^3,
from = 0, to = 70, add=TRUE, col='red', lwd=2
)
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The marginal effect depends on the years of experience:
𝜕𝐸[wage𝑖|exper𝑖]

𝜕exper𝑖
= 𝛽2 + 2𝛽3exper𝑖 + 3𝛽4exper2

𝑖 .

For instance, the additional wage for a worker with 11 years of experience compared to a
worker with 10 years of experience is on average

1.2013 + 2 ⋅ (−0.0447) ⋅ 10 + 3 ⋅ 0.0004 ⋅ 102 = 0.4273.
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Income and test scores

Another example is the relationship between the income of schooling districts and their test
scores.

Income and test score are positively correlated:

cor(CASchools$income, CASchools$score)

[1] 0.7124308

School districts with above-average income tend to achieve above-average test scores. But
does a linear regression adequately model the data? Let’s compare a linear with a quadratic
regression specification.

linear = lm(score ~ income, data = CASchools)
linear

Call:
lm(formula = score ~ income, data = CASchools)

Coefficients:
(Intercept) income

625.384 1.879

Estimated linear regression function:

ŝcore = 625.4 + 1.88 inc.

quad = lm(score ~ income + I(income^2), data = CASchools)
quad

Call:
lm(formula = score ~ income + I(income^2), data = CASchools)

Coefficients:
(Intercept) income I(income^2)
607.30174 3.85099 -0.04231
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Estimated quadratic regression function:

ŝcore = 607.3 + 3.85 inc − 0.0423 inc2.

# Create scatterplot
plot(score ~ income, data = CASchools,

xlab = "District Income (thousands)",
ylab = "Test Score")

# Add fitted curves
curve(coef(linear)[1] + coef(linear)[2]*x, add = TRUE, col = "red", lwd=2)
curve(coef(quad)[1] + coef(quad)[2]*x + coef(quad)[3]*x^2, add = TRUE, col = "blue", lwd=2)

# Add legend
legend("bottomright", c("Quadratic", "Linear"), col = c("blue", "red"), lwd = 2)
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The plot shows that the linear regression line seems to overestimate the true relationship when
income is either very high or very low and it tends to underestimate it for the middle income
group.

The quadratic function appears to provide a better fit to the data compared to the linear
function.
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6.4 Logarithms

Log-income and test scores

Another approach to estimate a concave nonlinear regression function involves using a loga-
rithmic regressor.

# estimate a linear-log model
linlog = lm(score ~ log(income), data = CASchools)
linlog

Call:
lm(formula = score ~ log(income), data = CASchools)

Coefficients:
(Intercept) log(income)

557.83 36.42

The estimated regression function is

ŝcore = 557.8 + 36.42 log(inc)

# Create scatterplot
plot(score ~ income, data = CASchools,

xlab = "District Income (thousands)",
ylab = "Test Score")

# Add fitted curves
curve(coef(linlog)[1] + coef(linlog)[2]*log(x), add = TRUE, col = "blue", lwd = 2)
curve(coef(linear)[1] + coef(linear)[2]*x, add = TRUE, col = "red", lwd = 2)

# Add legend
legend("bottomright", c("Linear-log", "Linear"), col = c("blue", "red"), lwd = 2)
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linear quad linlog
(Intercept) 625.384 607.302 557.832
income 1.879 3.851
I(income^2) −0.042
log(income) 36.420
Num.Obs. 420 420 420
R2 0.508 0.556 0.563
R2 Adj. 0.506 0.554 0.561
RMSE 13.35 12.68 12.59
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library(modelsummary)
modelsummary(list("linear" = linear, "quad" = quad, "linlog" = linlog),

statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))

We observe that the adjusted R-squared is highest for the logarithmic model, indicating that
the latter is the most suitable.

The coefficients have a different interpretation.

• Assuming the linear model specification is correct, we have

𝐸[score|inc] = 𝛽1 + 𝛽2inc.
The marginal effect of income on score is

𝜕𝐸[score|inc]
𝜕inc = 𝛽2.
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Students from a district with $1000 higher income have on average 1.879 points higher
scores.

• Assuming the quadratic model specification is correct, we have

𝐸[score|inc] = 𝛽1 + 𝛽2inc + 𝛽3inc2.
The marginal effect income on score depends on the income level:

𝜕𝐸[score|inc]
𝜕inc = 𝛽2 + 2𝛽3inc.

When considering a district with x income, students with $1000 higher income have on
average 3.85 - 0.0846x points higher scores.

• Assuming the logarithmic model specification is correct, we have

𝐸[score|inc] = 𝛽1 + 𝛽2 log(inc).
The slope coefficient represents the marginal effect of log(income) on score:

𝜕𝐸[score|inc]
𝜕 log(inc) = 𝛽2.

Instead, the marginal effect of income on score is

𝜕𝐸[score|inc]
𝜕inc = 𝛽2 ⋅ 1

inc ,
so

𝜕𝐸[score|inc]⏟⏟⏟⏟⏟
absolute change

= 𝛽2 ⋅ 𝜕inc
inc⏟

percentage change

.

Students from a district with 1% higher income have on average 36.42 ⋅ 1% = 0.3642
points higher scores.

Education and log-wages

If a convex relationship is expected, we can also use a logarithmic transformation for the
dependent variable:

log(wage𝑖) = 𝛽1 + 𝛽2edu𝑖 + 𝑢𝑖

log_model = lm(log(wage) ~ education, data = cps.as)
linear_model = lm(wage ~ education, data = cps.as)
plot(wage ~ education, data = cps.as, ylim = c(0,80), xlim = c(4,22))
abline(linear_model, col="blue")
coef = coefficients(log_model)
curve(exp(coef[1]+coef[2]*x), add=TRUE, col="red")
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The marginal effect of education on log(wage) is

𝜕𝐸[log(wage𝑖)|𝑒𝑑𝑢𝑖]
𝜕edu𝑖

= 𝛽2.

To interpret 𝛽2 in terms of changes of wage instead of log(wage), consider the following
approximation:

𝐸[wage𝑖|edu𝑖] ≈ exp(𝐸[log(wage𝑖)|edu𝑖]).
The left-hand expression is the conventional conditional mean, and the right-hand expression
is the geometric mean. The geometric mean is slightly smaller because 𝐸[log(𝑌 )] < log(𝐸[𝑌 ]),
but this difference is small unless the data is highly skewed.

The marginal effect of a change in 𝑒𝑑𝑢 on the geometric mean of 𝑤𝑎𝑔𝑒 is

𝜕𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])
𝜕edu𝑖

= 𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
outer derivative

⋅𝛽2.

Using the geometric mean approximation from above, we get

𝜕𝐸[wage𝑖|edu𝑖]
𝐸[wage𝑖|edu𝑖]⏟⏟⏟⏟⏟⏟⏟

percentage
change

≈ 𝜕𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])
𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])

= 𝛽2 ⋅ 𝜕edu𝑖⏟
absolute
change

.

log_model
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Call:
lm(formula = log(wage) ~ education, data = cps.as)

Coefficients:
(Intercept) education

1.3783 0.1113

Interpretation: A person with one more year of education has a wage that is 11.13% higher on
average.

In addition to the linear-log and log-linear specifications, we also have the log-log specifica-
tion

log(𝑌 ) = 𝛽1 + 𝛽2 log(𝑋) + 𝑢.

Log-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 𝛽2% higher 𝑌 .

6.5 Interactions

A linear regression with interaction terms:

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3fem𝑖 + 𝛽4marr𝑖 + 𝛽5(marr𝑖 ⋅ fem𝑖) + 𝑢𝑖

lm(wage ~ education + female + married + married:female, data = cps)

Call:
lm(formula = wage ~ education + female + married + married:female,

data = cps)

Coefficients:
(Intercept) education female married female:married

-18.241 2.877 -3.025 7.352 -6.016

The marginal effect of gender depends on the person’s marital status:

𝜕𝐸[wage𝑖|edu𝑖, fem𝑖, marr𝑖]
𝜕fem𝑖

= 𝛽3 + 𝛽5marr𝑖

Since female is a dummy variable, we interpret the marginal effect as a discrete 0 → 1 change
(ceteris paribus), not literally a derivative.
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Interpretation: Given the same education, unmarried women are paid on average 3.27 USD
less than unmarried men, and married women are paid on average 3.27+5.77=9.04 USD less
than married men.

The marginal effect of the marital status depends on the person’s gender:

𝜕𝐸[wage𝑖|edu𝑖, fem𝑖, marr𝑖]
𝜕marr𝑖

= 𝛽4 + 𝛽5fem𝑖

Interpretation: Given the same education, married men are paid on average 7.17 USD more
than unmarried men, and married women are paid on average 7.17-5.77=1.40 USD more than
unmarried women.

6.6 R Code

statistics-sec06.R
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