
6 Covariance

6.1 Expectation of bivariate random variables

We often are interested in expected values of functions involving two random variables, such
as the cross-moment 𝐸[𝑌 𝑍] for variables 𝑌 and 𝑍.

If 𝐹(𝑎, 𝑏) is the joint CDF of (𝑌 , 𝑍), then the cross-moment is defined as:

𝐸[𝑌 𝑍] = ∫
∞

−∞
∫

∞

−∞
𝑎𝑏 d𝐹(𝑎, 𝑏). (6.1)

If 𝑌 and 𝑍 are continuous and 𝐹(𝑎, 𝑏) is differentiable, the joint probability density function
(PDF) of (𝑌 , 𝑍):

𝑓(𝑎, 𝑏) = 𝜕2

𝜕𝑎𝜕𝑏𝐹(𝑎, 𝑏).

This allows us to write the differential of the CDF as

d𝐹(𝑎, 𝑏) = 𝑓(𝑎, 𝑏) d𝑎 d𝑏,

and the cross-moment becomes:

𝐸[𝑌 𝑍] = ∫
∞

−∞
∫

∞

−∞
𝑎𝑏 d𝐹(𝑎, 𝑏) = ∫

∞

−∞
∫

∞

−∞
𝑎𝑏𝑓(𝑎, 𝑏) d𝑎 d𝑏.

In the wage and experience example, we have the following joint CDF and joint PDF:

If 𝑌 and 𝑍 are discrete with joint PMF 𝜋(𝑎, 𝑏) and support 𝒴, the cross moment is

𝐸[𝑌 𝑍] = ∫
∞

−∞
∫

∞

−∞
𝑎𝑏 d𝐹(𝑎, 𝑏) = ∑

𝑎∈𝒴
∑
𝑏∈𝒴

𝑎𝑏 𝜋(𝑎, 𝑏).

If one variable is discrete and the other is continuous, the expectation involves a mixture of
summation and integration.

In general, the expected value of any real valued function 𝑔(𝑌 , 𝑍) is given by

𝐸[𝑔(𝑋, 𝑌 )] = ∫
∞

−∞
∫

∞

−∞
𝑔(𝑎, 𝑏) d𝐹(𝑎, 𝑏).
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Figure 6.1: Joint CDF of wage and experience

Figure 6.2: Joint PDF of wage and experience
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6.2 Covariance and correlation

The covariance of 𝑌 and 𝑍 is defined as:

𝐶𝑜𝑣(𝑌 , 𝑍) = 𝐸[(𝑌 − 𝐸[𝑌 ])(𝑍 − 𝐸[𝑍])] = 𝐸[𝑌 𝑍] − 𝐸[𝑌 ]𝐸[𝑍].
The covariance of 𝑌 with itself is the variance:

𝐶𝑜𝑣(𝑌 , 𝑌 ) = 𝑉 𝑎𝑟[𝑌 ].

The variance of the sum of two random variables depends on the covariance:

𝑉 𝑎𝑟[𝑌 + 𝑍] = 𝑉 𝑎𝑟[𝑌 ] + 2𝐶𝑜𝑣(𝑌 , 𝑍) + 𝑉 𝑎𝑟[𝑍]

The correlation of 𝑌 and 𝑍 is

𝐶𝑜𝑟𝑟(𝑌 , 𝑍) = 𝐶𝑜𝑣(𝑌 , 𝑍)
𝑠𝑑(𝑌 )𝑠𝑑(𝑍)

where 𝑠𝑑(𝑌 ) and 𝑠𝑑(𝑍) are the standard deviations of 𝑌 and 𝑍, respectively.

Uncorrelated

𝑌 and 𝑍 are uncorrelated if 𝐶𝑜𝑟𝑟(𝑌 , 𝑍) = 0, or, equivalently, if 𝐶𝑜𝑣(𝑌 , 𝑍) = 0.

If 𝑌 and 𝑍 are uncorrelated, then:

𝐸[𝑌 𝑍] = 𝐸[𝑌 ]𝐸[𝑍]
𝑉 𝑎𝑟[𝑌 + 𝑍] = 𝑉 𝑎𝑟[𝑌 ] + 𝑉 𝑎𝑟[𝑍]

If 𝑌 and 𝑍 are independent and have finite second moments, they are uncorrelated. However,
the reverse is not necessarily true; uncorrelated variables are not always independent.

6.3 Expectations for random vectors

These concepts generalize to any 𝑘-dimensional random vector 𝑍𝑍𝑍 = (𝑍1, … , 𝑍𝑘).
The expectation vector of 𝑍𝑍𝑍 is:

𝐸[𝑍𝑍𝑍] = ⎛⎜
⎝

𝐸[𝑍1]
⋮

𝐸[𝑍𝑘]
⎞⎟
⎠

.
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The covariance matrix of 𝑍𝑍𝑍 is:

𝑉 𝑎𝑟[𝑍𝑍𝑍] = 𝐸[(𝑍𝑍𝑍 − 𝐸[𝑍𝑍𝑍])(𝑍𝑍𝑍 − 𝐸[𝑍𝑍𝑍])′]

=
⎛⎜⎜⎜⎜
⎝

𝑉 𝑎𝑟[𝑍1] 𝐶𝑜𝑣(𝑍1, 𝑍2) … 𝐶𝑜𝑣(𝑋1, 𝑍𝑘)
𝐶𝑜𝑣(𝑍2, 𝑍1) 𝑉 𝑎𝑟[𝑍2] … 𝐶𝑜𝑣(𝑍2, 𝑍𝑘)

⋮ ⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑍𝑘, 𝑍1) 𝐶𝑜𝑣(𝑍𝑘, 𝑍2) … 𝑉 𝑎𝑟[𝑍𝑘]

⎞⎟⎟⎟⎟
⎠

For any random vector 𝑍𝑍𝑍, the covariance matrix 𝑉 𝑎𝑟[𝑍𝑍𝑍] is symmetric and positive semi-
definite.

6.4 Population regression

Consider the dependent variable 𝑌𝑖 and the regressor vector 𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′ for a
representative individual 𝑖 from the population. Assume the linear relationship:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖,

where 𝛽𝛽𝛽 is the vector of population regression coefficients, and 𝑢𝑖 is an error term satisfying
𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000.

The error term 𝑢𝑖 accounts for factors affecting 𝑌𝑖 that are not included in the model, such
as measurement errors, omitted variables, or unobserved/unmeasured variables. We assume
all variables have finite second moments, ensuring that all covariances and cross-moments are
finite.

To express 𝛽𝛽𝛽 in terms of population moments, compute:

𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] = 𝐸[𝑋𝑋𝑋𝑖(𝑋𝑋𝑋′
𝑖𝛽 + 𝑢𝑖)]

= 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖]𝛽𝛽𝛽 + 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖].

Since 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000, it follows that

𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖]𝛽𝛽𝛽.

Assuming 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is invertible, we solve for 𝛽𝛽𝛽:

𝛽𝛽𝛽 = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖]−1𝐸[𝑋𝑋𝑋𝑖𝑌𝑖].

Applying the method of moments, we estimate 𝛽𝛽𝛽 by replacing the population moments with
their sample counterparts:

̂𝛽𝛽𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖

This estimator ̂𝛽𝛽𝛽 coincides with the OLS coefficient vector and is known as the OLS estimator
or the method of moments estimator for 𝛽𝛽𝛽.
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6.5 R-codes

statistics-sec06.R
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