
7 Conditional expectation

7.1 Conditional distribution

The conditional cumulative distribution function (conditional CDF),

𝐹𝑌 |𝑍=𝑏(𝑎) = 𝐹𝑌 |𝑍(𝑎|𝑏) = 𝑃(𝑌 ≤ 𝑎|𝑍 = 𝑏),

represents the distribution of a random variable 𝑌 given that another random variable 𝑍 takes
a specific value 𝑏. It answers the question: “If we know that 𝑍 = 𝑏, what is the distribution
of 𝑌 ?”

For example, suppose that 𝑌 represents wage and 𝑍 represents education

• 𝐹𝑌 |𝑍=12(𝑎) is the CDF of wages among individuals with 12 years of education.
• 𝐹𝑌 |𝑍=14(𝑎) is the CDF of wages among individuals with 14 years of education.
• 𝐹𝑌 |𝑍=18(𝑎) is the CDF of wages among individuals with 18 years of education.

Figure 7.1: Conditional CDFs of wage given education

Since wage is a continuous variable, its conditional distribution given any specific value of
another variable is also continuous. The conditional density of 𝑌 given 𝑍 = 𝑏 is defined as the
derivative of the conditional CDF:

𝑓𝑌 |𝑍=𝑏(𝑎) = 𝑓𝑌 |𝑍(𝑎|𝑏) = 𝜕
𝜕𝑎𝐹𝑌 |𝑍=𝑏(𝑎).
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Figure 7.2: Conditional PDFs of wage given education

We can also condition on more than one variable. Let 𝑍1 represent the experience and 𝑍2 be
the female dummy variable. The conditional CDF of 𝑌 given 𝑍1 = 𝑏 and 𝑍2 = 𝑐 is:

𝐹𝑌 |𝑍1=𝑏,𝑍2=𝑐(𝑎).

For example:

• 𝐹𝑌 |𝑍1=10,𝑍2=1(𝑎) is the CDF of wages among women with 10 years of experience.
• 𝐹𝑌 |𝑍1=10,𝑍2=0(𝑎) is the CDF of wages among men with 10 years of experience.

Figure 7.3: Conditional CDFs of wage given experience and gender

Similarly, we can take the derivative to get the conditional density 𝑓𝑌 |𝑍1=𝑏,𝑍2=𝑐(𝑎):
More generally, we can condition on the event that a random vector 𝑍𝑍𝑍 = (𝑍1, … , 𝑍𝑘)′ takes
the value {𝑍𝑍𝑍 = 𝑏𝑏𝑏}, i.e. {𝑍1 = 𝑏1, … , 𝑍𝑘 = 𝑏𝑘}. The conditional CDF of 𝑌 given {𝑍𝑍𝑍 = 𝑏𝑏𝑏} is

𝐹𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏(𝑎) = 𝐹𝑌 |𝑍1=𝑏1,…,𝑍𝑘=𝑏𝑘
(𝑎).

The variable of interest, 𝑌 , can also be discrete. Then, any conditional CDF of 𝑌 is also
discrete. Below is the conditional CDF of education given the married dummy variable:
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Figure 7.4: Conditional CDFs of wage given experience and gender

• 𝐹𝑌 |𝑍=0(𝑎) is the CDF of education among unmarried individuals.
• 𝐹𝑌 |𝑍=1(𝑎) is the CDF of education among married individuals.

Figure 7.5: Conditional CDFs of education given married

The conditional PMFs 𝜋𝑌 |𝑍=0(𝑎) = 𝑃(𝑌 = 𝑎|𝑍 = 0) and 𝜋𝑌 |𝑍=1(𝑎) = 𝑃(𝑌 = 𝑎|𝑍 = 1)
indicate the jump heights of 𝐹𝑌 |𝑍=0(𝑎) and 𝐹𝑌 |𝑍=1(𝑎) at 𝑎.

7.1.1 Conditioning on discrete variables

If 𝑍 is a discrete random variable, then the conditional CDF can be expressed in terms of
conditional probabilities.

The conditional probability of an event 𝐴 given an event 𝐵 with 𝑃(𝐵) > 0 is

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)
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Let’s revisit the wage and schooling example from Table 4.3:

𝜋𝑌 |𝑍=1(1) = 𝑃(𝑌 = 1|𝑍 = 1) = 𝑃({𝑌 = 1} ∩ {𝑍 = 1})
𝑃(𝑍 = 1) = 0.19

0.36 = 0.53

𝜋𝑌 |𝑍=0(1) = 𝑃(𝑌 = 1|𝑍 = 0) = 𝑃({𝑌 = 1} ∩ {𝑍 = 0})
𝑃(𝑍 = 0) = 0.12

0.64 = 0.19

Therefore, the conditional CDF of 𝑌 given {𝑍 = 𝑏} with 𝑃(𝑍 = 𝑏) > 0 is:

𝐹𝑌 |𝑍=𝑏(𝑎) = 𝑃(𝑌 ≤ 𝑎|𝑍 = 𝑏) = 𝑃(𝑌 ≤ 𝑎, 𝑍 = 𝑏)
𝑃(𝑍 = 𝑏) = ∑

𝑢∈𝒴,𝑢≤𝑎

𝜋𝑌 𝑍(𝑢, 𝑏)
𝜋𝑍(𝑏) .

7.1.2 Conditioning on continuous variables

If 𝑍 is a continuous variable, we have 𝑃(𝑍 = 𝑏) = 0 for all 𝑏, and 𝑃(𝑌 ≤ 𝑎|𝑍 = 𝑏) cannot be
defined in the same way as for discrete variables.

If 𝑓𝑌 𝑍(𝑎, 𝑏) is the joint PDF of 𝑌 and 𝑍 and 𝑓𝑍(𝑏) is the marginal PDF of 𝑍, the relation of
the conditional CDF and the PDFs is as follows:

𝐹𝑌 |𝑍=𝑏(𝑎) = 𝑃(𝑌 ≤ 𝑎|𝑍 = 𝑏) = ∫
𝑎

−∞

𝑓𝑌 𝑍(𝑢, 𝑏)
𝑓𝑍(𝑏) d𝑢.

7.2 Conditional mean

Conditional expectation

The conditional expectation or conditional mean of 𝑌 given 𝑍𝑍𝑍 = 𝑏𝑏𝑏 is the expected value
of the distribution 𝐹𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏:

𝐸[𝑌 |𝑍𝑍𝑍 = 𝑏𝑏𝑏] = ∫
∞

−∞
𝑎 d𝐹𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏(𝑎).

For continuous 𝑌 with conditional density 𝑓𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏(𝑎), we have d𝐹𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏(𝑎) = 𝑓𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏(𝑎) d𝑎, and
the conditional expectation is

𝐸[𝑌 |𝑍 = 𝑏𝑏𝑏] = ∫
∞

−∞
𝑎𝑓𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏(𝑎) d𝑎.
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Similarly, for discrete 𝑌 with support 𝒴 and conditional PMF 𝜋𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏(𝑎), we have

𝐸[𝑌 |𝑍 = 𝑏𝑏𝑏] = ∑
𝑢∈𝒴

𝑢𝜋𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏(𝑢).

The conditional expectation is a function of 𝑏𝑏𝑏, which is a specific value of 𝑍𝑍𝑍 that we condition
on. Therefore, we call it the conditional expectation function:

𝑚(𝑏𝑏𝑏) = 𝐸[𝑌 |𝑍 = 𝑏𝑏𝑏].

(a) CEF wage given experience (b) CEF wage given education

Figure 7.6: Conditional expectation functions. The x-axis represents 𝑏.

Suppose the conditional expectation of wage given experience level 𝑏 is:

𝑚(𝑏) = 𝐸[𝑤𝑎𝑔𝑒|𝑒𝑥𝑝𝑒𝑟 = 𝑏] = 14.5 + 0.9𝑏 − 0.017𝑏2.

For example, with 10 years of experience:

𝑚(10) = 𝐸[𝑤𝑎𝑔𝑒|𝑒𝑥𝑝𝑒𝑟 = 10] = 21.8.

Here, 𝑚(𝑏) assigns a specific real number to each fixed value of 𝑏; it is a deterministic function
derived from the joint distribution of wage and experience.

However, if we treat experience as a random variable, the conditional expectation becomes:

𝑚(𝑒𝑥𝑝𝑒𝑟) = 𝐸[𝑤𝑎𝑔𝑒|𝑒𝑥𝑝𝑒𝑟] = 14.5 + 0.9𝑒𝑥𝑝𝑒𝑟 − 0.017𝑒𝑥𝑝𝑒𝑟2.
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Now, 𝑚(𝑒𝑥𝑝𝑒𝑟) is a function of the random variable experexper and is itself a random vari-
able.

In general:

• The conditional expectation given a specific value 𝑏 is:

𝑚(𝑏𝑏𝑏) = 𝐸[𝑌 |𝑍𝑍𝑍 = 𝑏𝑏𝑏],

which is deterministic.
• The conditional expectation given the random variable 𝑍 is:

𝑚(𝑍𝑍𝑍) = 𝐸[𝑌 |𝑍𝑍𝑍],

which is a random variable because it depends on the random vector 𝑍𝑍𝑍.

This distinction highlights that the conditional expectation can be either a specific number,
i.e. 𝐸[𝑌 |𝑍𝑍𝑍 = 𝑏𝑏𝑏], or a random variable, i.e., 𝐸[𝑌 |𝑍𝑍𝑍], depending on whether the condition is
fixed or random.

7.3 Rules of calculation

Rules of Calculation for Conditional Expectation

Let 𝑌 be a random variable and 𝑍𝑍𝑍 a random vector. The rules of calculation rules below are
fundamental tools for working with conditional expectations:

(i) Law of Iterated Expectations (LIE):

𝐸[𝐸[𝑌 |𝑍𝑍𝑍]] = 𝐸[𝑌 ].

Intuition: The LIE tells us that if we first compute the expected value of 𝑌 given each possible
outcome of 𝑍𝑍𝑍, and then average those expected values over all possible values of 𝑍𝑍𝑍, we end
up with the overall expected value of 𝑌 . It’s like calculating the average outcome across all
scenarios by considering each scenario’s average separately.

More generally, for any two random vectors 𝑍𝑍𝑍 and 𝑍𝑍𝑍∗:

𝐸[𝐸[𝑌 |𝑍𝑍𝑍,𝑍𝑍𝑍∗]|𝑍𝑍𝑍] = 𝐸[𝑌 |𝑍𝑍𝑍].
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Intuition: Even if we condition on additional information 𝑍𝑍𝑍∗, averaging over 𝑍𝑍𝑍∗ while keeping
𝑍𝑍𝑍 fixed brings us back to the conditional expectation given 𝑍𝑍𝑍 alone.

(ii) Conditioning Theorem (CT):

For any function 𝑔(𝑍𝑍𝑍):

𝐸[𝑔(𝑍𝑍𝑍) 𝑌 |𝑍𝑍𝑍] = 𝑔(𝑍𝑍𝑍) 𝐸[𝑌 |𝑍𝑍𝑍].

Intuition: Once we know 𝑍𝑍𝑍, the function 𝑔(𝑍𝑍𝑍) becomes a known quantity. Therefore, when
computing the conditional expectation given 𝑍𝑍𝑍, we can treat 𝑔(𝑍𝑍𝑍) as a constant and factor it
out.

(iii) Independence Rule (IR):

If 𝑌 and 𝑍𝑍𝑍 are independent, then:

𝐸[𝑌 |𝑍𝑍𝑍] = 𝐸[𝑌 ].

Intuition: Independence means that 𝑌 and 𝑍𝑍𝑍 do not influence each other. Knowing the value
of 𝑍𝑍𝑍 gives us no additional information about 𝑌 . Therefore, the expected value of 𝑌 remains
the same regardless of the value of 𝑍𝑍𝑍, so the conditional expectation equals the unconditional
expectation.

Another way to see this is the fact that, if 𝑌 and 𝑍 are independent, then

𝐹𝑌 |𝑍=𝑏(𝑎) = 𝐹𝑌 (𝑎) for all 𝑎 and 𝑏.
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7.4 Best predictor property

It turns out that the CEF 𝑚(𝑍𝑍𝑍) = 𝐸[𝑌 |𝑍𝑍𝑍] is the best predictor for 𝑌 given the information
contained in the random vector 𝑍𝑍𝑍:

Best predictor

The CEF 𝑚(𝑍𝑍𝑍) = 𝐸[𝑌 |𝑍𝑍𝑍] minimizes the expected squared error 𝐸[(𝑌 − 𝑔(𝑍𝑍𝑍))2] among all
predictor functions 𝑔(𝑍𝑍𝑍):

𝑚(𝑍𝑍𝑍) = argmin𝑔(𝑍𝑍𝑍) 𝐸[(𝑌 − 𝑔(𝑍𝑍𝑍))2]

Proof: Let us find the function 𝑔(⋅) that minimizes 𝐸[(𝑌 − 𝑔(𝑍𝑍𝑍))2]:

𝐸[(𝑌 − 𝑔(𝑍𝑍𝑍))2] = 𝐸[(𝑌 − 𝑚(𝑍𝑍𝑍) + 𝑚(𝑍𝑍𝑍) − 𝑔(𝑍𝑍𝑍))2]
= 𝐸[(𝑌 − 𝑚(𝑍𝑍𝑍))2]⏟⏟⏟⏟⏟⏟⏟

=(𝑖)
+2 𝐸[(𝑌 − 𝑚(𝑍𝑍𝑍))(𝑚(𝑍𝑍𝑍) − 𝑔(𝑍𝑍𝑍))]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=(𝑖𝑖)
+ 𝐸[(𝑚(𝑍𝑍𝑍) − 𝑔(𝑍𝑍𝑍))2]⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑖𝑖𝑖)

• The first term (i) does not depend on 𝑔(⋅) and is finite if 𝐸[𝑌 2] < ∞.
• For the second term (ii), we use the LIE and CT:

𝐸[(𝑌 − 𝑚(𝑍𝑍𝑍))(𝑚(𝑍𝑍𝑍) − 𝑔(𝑍𝑍𝑍))]
= 𝐸[𝐸[(𝑌 − 𝑚(𝑍𝑍𝑍))(𝑚(𝑍𝑍𝑍) − 𝑔(𝑍𝑍𝑍))|𝑍𝑍𝑍]]
= 𝐸[𝐸[𝑌 − 𝑚(𝑍𝑍𝑍)|𝑍𝑍𝑍](𝑚(𝑍𝑍𝑍) − 𝑔(𝑍𝑍𝑍))]
= 𝐸[(𝐸[𝑌 |𝑍𝑍𝑍]⏟

=𝑚(𝑍𝑍𝑍)
−𝑚(𝑍𝑍𝑍))(𝑚(𝑍𝑍𝑍) − 𝑔(𝑍𝑍𝑍))] = 0

• The third term (iii) 𝐸[(𝑚(𝑍𝑍𝑍) − 𝑔(𝑍𝑍𝑍))2] is minimal if 𝑔(⋅) = 𝑚(⋅).

Therefore, 𝑚(𝑍𝑍𝑍) = 𝐸[𝑌 |𝑍𝑍𝑍] minimizes 𝐸[(𝑌 − 𝑔(𝑍𝑍𝑍))2].

The best predictor for 𝑌 given 𝑍𝑍𝑍 is 𝑚(𝑍𝑍𝑍) = 𝐸[𝑌 |𝑍𝑍𝑍], but 𝑌 can typically only partially be
predicted. We have a prediction error (CEF error)

𝑢 = 𝑌 − 𝐸[𝑌 |𝑍𝑍𝑍].
The conditional expectation of the CEF error does not depend on 𝑋 and is zero:

𝐸[𝑢|𝑍𝑍𝑍] = 𝐸[(𝑌 − 𝑚(𝑍𝑍𝑍))|𝑍𝑍𝑍]
= 𝐸[𝑌 |𝑍𝑍𝑍] − 𝐸[𝑚(𝑍𝑍𝑍)|𝑍𝑍𝑍]
= 𝑚(𝑍𝑍𝑍) − 𝑚(𝑍𝑍𝑍) = 0.
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7.5 Linear regression model

Consider again the linear regression framework with dependent variable 𝑌𝑖 and regressor vector
𝑋𝑋𝑋𝑖. The previous section shows that we can always write

𝑌𝑖 = 𝑚(𝑋𝑋𝑋𝑖) + 𝑢𝑖, 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0,

where 𝑚(𝑋𝑋𝑋𝑖) is the CEF of 𝑌𝑖 given 𝑋𝑋𝑋𝑖, and 𝑢𝑖 is the CEF error.

In the linear regression model, we assume that the CEF is linear in 𝑋𝑋𝑋𝑖, i.e.

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0.

From this equation, by the CT, it becomes clear that

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝐸[𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 + 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽.

Therefore, 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 is the best predictor for 𝑌𝑖 given 𝑋𝑋𝑋𝑖.

Linear regression model

We assume that (𝑌𝑖,𝑋𝑋𝑋′
𝑖) satisfies

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛, (7.1)

with

• (A1) conditional mean independence: 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0
• (A2) random sampling: (𝑌𝑖,𝑋𝑋𝑋′

𝑖) are i.i.d. draws from their joint population distribu-
tion

• (A3) large outliers unlikely: 0 < 𝐸[𝑌 4
𝑖 ] < ∞, 0 < 𝐸[𝑋4

𝑖𝑙] < ∞ for all 𝑙 = 1, … , 𝑘
• (A4) no perfect multicollinearity: ∑𝑛

𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖 is invertible

In matrix notation, the model equation can be written as

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢,

where 𝑢𝑢𝑢 = (𝑢1, … , 𝑢𝑛)′ is the error term vector, 𝑌𝑌𝑌 is the dependent variable vector, and 𝑋𝑋𝑋 is
the 𝑛 × 𝑘 regressor matrix.

(A1) and (A2) define the structure of the regression model, while (A3) and (A4) ensure that
OLS estimation is feasible and reliable.

7.5.1 Conditional mean independence (A1)

Assumption (A1) is fundamental to the regression model and has several key implications:
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1) Zero unconditional mean

Using the Law of Iterated Expectations (LIE):

𝐸[𝑢𝑖]
(𝐿𝐼𝐸)= 𝐸[𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]] = 𝐸[0] = 0

The error term 𝑢𝑖 has a zero unconditional mean.

2) Linear best predictor

The conditional mean of 𝑌𝑖 given 𝑋𝑖 is:

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝐸[𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖|𝑋𝑋𝑋𝑖]

(𝐶𝑇 )= 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]

= 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽

The regression function 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 represents the best linear predictor of 𝑌𝑖 given 𝑋𝑋𝑋𝑖. This means

the expected value of 𝑌𝑖 is a linear function of the regressors.

3) Marginal effect interpretation

From the linearity of the conditional expectation:

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 = 𝛽1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘.

The partial derivative with respect to 𝑋𝑖𝑗 is:

d𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖]
d𝑋𝑖𝑗

= 𝛽𝑗

The coefficient 𝛽𝑗 represents the marginal effect of a one-unit increase in 𝑋𝑖𝑗 on the expected
value of 𝑌𝑖, holding all other variables constant.

Note: This marginal effect is not necessarily causal. Unobserved factors correlated with 𝑋𝑖𝑗
may influence 𝑌𝑖, so 𝛽𝑗 captures both the direct effect of 𝑋𝑖𝑗 and the indirect effect through
these unobserved variables.
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4) Weak exogeneity

Using the definition of covariance:

𝐶𝑜𝑣(𝑢𝑖, 𝑋𝑖𝑙) = 𝐸[𝑢𝑖𝑋𝑖𝑙] − 𝐸[𝑢𝑖]𝐸[𝑋𝑖𝑙].

Since 𝐸[𝑢𝑖] = 0:
𝐶𝑜𝑣(𝑢𝑖, 𝑋𝑖𝑙) = 𝐸[𝑢𝑖𝑋𝑖𝑙].

Applying the LIE and the CT:

𝐸[𝑢𝑖𝑋𝑖𝑙] = 𝐸[𝐸[𝑢𝑖𝑋𝑖𝑙|𝑋𝑋𝑋𝑖]]
= 𝐸[𝑋𝑖𝑙𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]]
= 𝐸[𝑋𝑖𝑙 ⋅ 0] = 0

The error term 𝑢𝑖 is uncorrelated with each regressor 𝑋𝑖𝑙. This property is known as weak
exogeneity. It indicates that 𝑢𝑖𝑖 captures unobserved factors that do not systematically vary
with the observed regressors.

Note: Weak exogeneity does not rule out the presence of unobserved variables that affect both
𝑌𝑖 and 𝑋𝑋𝑋𝑖. The coefficient 𝛽𝑗 reflects the average relationship between 𝑋𝑋𝑋𝑖 and 𝑌𝑖, including
any indirect effects from unobserved factors that are correlated with 𝑋𝑋𝑋𝑖.

7.5.2 Random sampling (A2)

1) Strict exogeneity

The i.i.d. assumption (A2) implies that {(𝑌𝑖,𝑋𝑋𝑋′
𝑖, 𝑢𝑖), 𝑖 = 1, … , 𝑛} is an i.i.d. collection since

𝑢𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 is a function of a random sample, and functions of independent variables are

independent as well.

Therefore, 𝑢𝑖 and 𝑋𝑋𝑋𝑗 are independent for 𝑖 ≠ 𝑗. The independence rule (IR) implies
𝐸[𝑢𝑖|𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛] = 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖].
The weak exogeneity condition (A1) turns into a strict exogeneity property:

𝐸[𝑢𝑖|𝑋𝑋𝑋] = 𝐸[𝑢𝑖|𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛] (𝐴2)= 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]
(𝐴1)= 0.

Additionally,
𝐶𝑜𝑣(𝑢𝑗, 𝑋𝑖𝑙) = 𝐸[𝑢𝑗𝑋𝑖𝑙]⏟

=0

− 𝐸[𝑢𝑗]⏟
=0

𝐸[𝑋𝑖𝑙] = 0.

Weak exogeneity means that the regressors of individual 𝑖 are uncorrelated with the error
term of the same individual 𝑖. Strict exogeneity means that the regressors of individual 𝑖 are
uncorrelated with the error terms of any individual 𝑗 in the sample.
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2) Heteroskedasticity

The i.i.d. assumption (A2) is not as restrictive as it may seem at first sight. It allows for
dependence between 𝑢𝑖 and 𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′. The error term 𝑢𝑖 can have a conditional
distribution that depends on 𝑋𝑋𝑋𝑖.

The exogeneity assumption (A1) requires that the conditional mean of 𝑢𝑖 is independent of 𝑋𝑋𝑋𝑖.
Besides this, dependencies between 𝑢𝑖 and 𝑋𝑖2, … , 𝑋𝑖𝑘 are allowed. For instance, the variance
of 𝑢𝑖 can be a function of 𝑋𝑖2, … , 𝑋𝑖𝑘. If this is the case, 𝑢𝑖 is said to be heteroskedastic.

The conditional variance is defined analogously to the unconditional variance:

𝑉 𝑎𝑟[𝑌 |𝑍𝑍𝑍] = 𝐸[(𝑌 − 𝐸[𝑌𝑌𝑌 |𝑍𝑍𝑍])2|𝑍𝑍𝑍] = 𝐸[𝑌 2|𝑍𝑍𝑍] − 𝐸[𝑌 |𝑍𝑍𝑍]2.

The conditional variance of the error is:

𝑉 𝑎𝑟[𝑢𝑖|𝑋𝑋𝑋] = 𝐸[𝑢2
𝑖 |𝑋𝑋𝑋] (𝐴2)= 𝐸[𝑢2

𝑖 |𝑋𝑋𝑋𝑖] =∶ 𝜎2
𝑖 = 𝜎2(𝑋𝑋𝑋𝑖).

An additional restrictive assumption is homoskedasticity, which means that the variance of
𝑢𝑖 is not allowed to vary for different values of 𝑋𝑋𝑋𝑖:

𝑉 𝑎𝑟[𝑢𝑖|𝑋𝑋𝑋] = 𝜎2.
Homoskedastic errors are a restrictive assumption sometimes made for convenience in addi-
tion to (A1)+(A2). Homoskedasticity is often unrealistic in practice, so we stick with the
heteroskedastic errors framework.

3) No autocorrelation

(A2) implies that 𝑢𝑖 is independent of 𝑢𝑗 for 𝑖 ≠ 𝑗, and therefore 𝐸[𝑢𝑖|𝑢𝑗,𝑋𝑋𝑋] = 𝐸[𝑢𝑖|𝑋𝑋𝑋] = 0
by the IR. This implies

𝐸[𝑢𝑖𝑢𝑗|𝑋𝑋𝑋] (𝐿𝐼𝐸)= 𝐸[𝐸[𝑢𝑖𝑢𝑗|𝑢𝑗,𝑋𝑋𝑋]|𝑋𝑋𝑋] (𝐶𝑇 )= 𝐸[𝑢𝑗 𝐸[𝑢𝑖|𝑢𝑗,𝑋𝑋𝑋]⏟⏟⏟⏟⏟
=0

|𝑋𝑋𝑋] = 0,

and, therefore,
𝐶𝑜𝑣(𝑢𝑖, 𝑢𝑗) = 𝐸[𝑢𝑖𝑢𝑗]

(𝐿𝐼𝐸)= 𝐸[𝐸[𝑢𝑖𝑢𝑗|𝑋𝑋𝑋]] = 0.

The conditional covariance matrix of the error term vector 𝑢𝑢𝑢 is

𝐷𝐷𝐷 ∶= 𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋] = 𝐸[𝑢𝑢𝑢𝑢𝑢𝑢′|𝑋𝑋𝑋] =
⎛⎜⎜⎜⎜
⎝

𝜎2
1 0 … 0

0 𝜎2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

.

It is a diagonal matrix with conditional variances on the main diagonal. We also write 𝐷𝐷𝐷 =
𝑑𝑖𝑎𝑔(𝜎2

1, … , 𝜎2
𝑛).
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7.5.3 Finite moments and invertibility (A3 + A4)

Assuming (A3) excludes frequently occurring large outliers as it rules out heavy-tailed distri-
butions. Hence, we should be careful if we use variables with large kurtosis. Assuming (A4)
ensures that the OLS estimator ̂𝛽𝛽𝛽 can be computed.

7.5.3.1 Unbiasedness

(A4) ensures that ̂𝛽𝛽𝛽 is well defined. The following decomposition is useful:
̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢)
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝑋𝑋𝑋)𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢
= 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢.

The strict exogeneity implies 𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋] = 000, and

𝐸[ ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝐸[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋] (𝐶𝑇 )= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′ 𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋]⏟
=000

= 000.

By the (LIE), 𝐸[ ̂𝛽𝛽𝛽] = 𝐸[𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋]] = 𝐸[𝛽𝛽𝛽] = 𝛽𝛽𝛽.

Hence, the OLS estimator is unbiased: 𝐵𝑖𝑎𝑠[ ̂𝛽𝛽𝛽] = 0.

7.5.3.2 Conditional variance

Recall the matrix rule 𝑉 𝑎𝑟[𝐴𝐴𝐴𝑍𝑍𝑍] = 𝐴𝐴𝐴𝑉 𝑎𝑟[𝑍𝑍𝑍]𝐴𝐴𝐴′ if 𝑍𝑍𝑍 is a random vector and 𝐴𝐴𝐴 is a matrix.
Then,

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝑉 𝑎𝑟[𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋]
= 𝑉 𝑎𝑟[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋]
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋]((𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′)′

= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

7.5.3.3 Consistency

The conditional variance can be written as

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 1
𝑛( 1

𝑛𝑋𝑋𝑋′𝑋𝑋𝑋)
−1

( 1
𝑛𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋)( 1

𝑛𝑋𝑋𝑋′𝑋𝑋𝑋)
−1

= 1
𝑛( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
( 1

𝑛
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
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It can be shown, by the multivariate law of large numbers, that 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] and
∑𝑛

𝑖=1 𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋𝑖

𝑝
→ 𝐸[𝜎2

𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖]. For this to hold we need bounded fourth moments, i.e. (A3). In

total, we have

( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
( 1

𝑛
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

𝑝
→ 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]−1𝐸[𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖]−1.

Note that the conditional variance 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] has an additional factor 1/𝑛, which converges to
zero for large 𝑛. Therefore, we have

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋]
𝑝

→ 000,

which also holds for the unconditional variance, i.e. 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽] → 000.

Therefore, since the bias is zero and the variance converges to zero, the sufficient conditions
for consistency are fulfilled. The OLS estimator ̂𝛽𝛽𝛽 is a consistent estimator for 𝛽𝛽𝛽 under (A1)–
(A4).

7.6 R-codes

statistics-sec07.R
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