
8 Simulations

8.1 Consistent estimation

Recall the definitions of the bias, variance, and mean squared error (MSE) of an estimator ̂𝜃
for a parameter 𝜃:

• Bias: 𝐵𝑖𝑎𝑠(̂𝜃) = 𝐸[̂𝜃] − 𝜃
• Variance: 𝑉 𝑎𝑟(̂𝜃) = 𝐸[(̂𝜃 − 𝐸[̂𝜃])2]
• MSE: 𝑀𝑆𝐸(̂𝜃) = 𝐸[(̂𝜃 − 𝜃)2]

These quantities are related by the equation:

𝑀𝑆𝐸(̂𝜃) = 𝑉 𝑎𝑟(̂𝜃) + 𝐵𝑖𝑎𝑠(̂𝜃)2.

This relationship holds for any estimator and can be derived as follows:

𝑀𝑆𝐸(̂𝜃) = 𝐸[(̂𝜃 − 𝜃)2]
= 𝐸[(̂𝜃 − 𝐸[̂𝜃] + 𝐸[̂𝜃] − 𝜃)2]
= 𝐸[(̂𝜃 − 𝐸[̂𝜃])2] + 2𝐸[(̂𝜃 − 𝐸[̂𝜃])(𝐸[̂𝜃] − 𝜃)] + (𝐸[̂𝜃] − 𝜃)2

= 𝑉 𝑎𝑟(̂𝜃) + 2(𝐸[̂𝜃] − 𝐸[̂𝜃]⏟⏟⏟⏟⏟
=0

)(𝐸[̂𝜃] − 𝜃) + 𝐵𝑖𝑎𝑠(̂𝜃)2

Recall that an estimator is consistent if it gets closer to the true parameter value as we collect
more data. In mathematical terms, ̂𝜃 is consistent for 𝜃 if its MSE tends to zero as the sample
size 𝑛 → ∞. This means both the bias and variance of ̂𝜃 approach zero.

To understand the consistency properties of an estimator ̂𝜃, an alternative to mathematical
proofs is to conduct a Monte Carlo simulation. These simulations are useful for studying the
sampling distribution of a statistic in a controlled environment where the true data-generating
population distribution is known. They allow us to compare the biases and MSEs of different
estimators for different sample sizes.

While mathematical proofs establish theoretical properties of estimators, Monte Carlo simula-
tions show us how these estimators actually behave with real, finite samples. These simulations
let us examine an estimator’s performance under different conditions and sample sizes, and
help us develop statistical intuition.

93

The idea is to use computer-generated pseudorandom numbers to create artificial datasets of
sample size 𝑛. We apply the estimator of interest to each dataset, which generates random
draws from the distribution of the estimator. By repeating this procedure independently 𝐵
times, we obtain an i.i.d. sample of size 𝐵 from the distribution of the estimator, known as a
Monte Carlo sample. From this sample, we can compute empirical estimates of quantities
like bias, variance, and MSE.

8.2 Set up

To set up the Monte Carlo simulation for ̂𝜃, we need to specify

1. Estimator (̂𝜃): The estimator of interest.
2. Population distribution (𝐹): The specific distribution from which we sample our

data.
3. Parameter value (𝜃): The particular value of the parameter of 𝐹 that we aim to

estimate.
4. Sample size (𝑛): The number of observations in each simulated dataset.
5. Sampling scheme: Typically independent and identically distributed (i.i.d.), but it

could also involve dependence (e.g., in time series data).
6. Number of repetitions (𝐵): The number of times the simulation is repeated to

generate a Monte Carlo sample.

For example, if we are interested in the MSE of the sample mean of 100 i.i.d. coin flips, we
set:

• ̂𝜃 = 𝑌 (the sample mean),
• 𝐹 as the Bernoulli distribution with 𝑃(𝑌 = 1) = 0.5,
• 𝜃 = 𝐸[𝑌] = 0.5 (the population mean),
• 𝑛 = 100,
• an i.i.d. sampling scheme,
• a large number of repetitions, such as 𝐵 = 10000.

8.3 Monte Carlo algorithm

The Monte Carlo simulation is performed as follows:

1. Using the specified sampling scheme, draw a sample {𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛} of size 𝑛 from 𝐹 using
the computer’s random number generator. Evaluate the estimator ̂𝜃 from {𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛}.

2. Repeat step 1 of the experiment 𝐵 times and collect the estimates in the Monte Carlo
sample

̂𝜃𝑚𝑐 = { ̂𝜃1, … , ̂𝜃𝐵}.

94

3. Estimate the features of interest from the Monte Carlo sample:

• Mean:

̂𝜇𝑚𝑐 = 1
𝐵

𝐵
∑
𝑖=1

̂𝜃𝑖.

• Bias:
𝐵𝑖𝑎𝑠(̂𝜃𝑚𝑐) = ̂𝜇𝑚𝑐 − 𝜃

• Variance:

𝑉 𝑎𝑟(̂𝜃𝑚𝑐) = 1
𝐵 − 1

𝐵
∑
𝑖=1

(̂𝜃𝑖 − ̂𝜇𝑚𝑐)2

• MSE:
𝑀𝑆𝐸(̂𝜃𝑚𝑐) = 𝑉 𝑎𝑟(̂𝜃𝑚𝑐) + 𝐵𝑖𝑎𝑠(̂𝜃𝑚𝑐)2

8.4 Sample mean of coin flips

Let’s conduct a Monte Carlo simulation for the sample mean of coin flips.

set.seed(1) # Set seed for reproducibility

Function to generate a random sample and compute its sample mean
getMCsample = function(n) {
Generate an i.i.d. Bernoulli sample of size n with probability 0.5
X = rbinom(n, size = 1, prob = 0.5)
Compute and return the sample mean of X
mean(X)

}

True parameter value (population mean) of the Bernoulli distribution
theta = 0.5

Number of Monte Carlo repetitions
B = 1000

Function to perform Monte Carlo simulation and calculate Bias, Variance, and MSE for a given sample size
simulate_bias_variance_mse = function(n) {
Generate a Monte Carlo sample of B sample means
MCsample = replicate(B, getMCsample(n))
Calculate Bias, Variance, and MSE
Bias = mean(MCsample) - theta
Variance = var(MCsample)

95

MSE = Variance + Bias^2
Return the results as a vector
c(Bias, Variance, MSE)

}

Run the simulation for different sample sizes and store results
result10 = simulate_bias_variance_mse(10)
result20 = simulate_bias_variance_mse(20)
result50 = simulate_bias_variance_mse(50)
results = cbind(result10, result20, result50)

Assign names to columns and rows for clarity in the output
colnames(results) = c("n=10", "n=20", "n=50")
rownames(results) = c("Bias", "Variance", "MSE")

Display the results
results

n=10 n=20 n=50
Bias -0.00470000 -0.00370000 0.004740000
Variance 0.02605396 0.01272403 0.004631364
MSE 0.02607605 0.01273772 0.004653831

This output shows how the bias, variance, and MSE decrease as the sample size increases,
which illustrates the consistency of the estimator.

8.5 Linear and nonlinear regression

Let’s use Monte Carlo simulations to study the consistency properties of the OLS estimator
in a simple linear regression model. We expect ̂𝛽2 to be a consistent estimator for 𝛽2 in the
following regression model:

𝑌𝑖 = 𝛽1 + 𝛽2𝑍𝑖 + 𝑢𝑖, 𝐸[𝑢𝑖|𝑍𝑖] = 0, (8.1)

provided (A2)–(A4) hold true. In this case, ̂𝛽2 is

̂𝛽2 = 𝜎̂𝑌 𝑍
𝜎̂2

𝑍
. (8.2)

However, the true relationship between 𝑌 and 𝑍 might be nonlinear such that the true model
has the form

𝑌𝑖 = 𝛽1 + 𝛽2𝑍𝑖 + 𝛽3𝑍2
𝑖 + 𝛽4𝑍3

𝑖 + 𝑣𝑖, 𝐸[𝑣𝑖|𝑍𝑖] = 0. (8.3)

96

Note that 𝑢𝑖 = 𝛽3𝑍2
𝑖 + 𝛽4𝑍3

𝑖 + 𝑣𝑖. Hence, if 𝛽3 ≠ 0, then

𝐸[𝑢𝑖|𝑍𝑖] = 𝐸[𝛽3𝑍2
𝑖 + 𝛽4𝑍3

𝑖 + 𝑣𝑖|𝑍𝑖]
= 𝛽3𝑍2

𝑖 + 𝛽4𝑍3
𝑖 + 𝐸[𝑣𝑖|𝑍𝑖]

= 𝛽3𝑍2
𝑖 + 𝛽4𝑍3

𝑖 ≠ 0,

and the simple model from Equation 8.1 cannot be true. This means the error term contains
systematic patterns related to 𝑍𝑖, which violates a key assumption (A1) of linear regression.

In this case, using ̂𝛽2 from Equation 8.2 to estimate 𝛽2 from Equation 8.3 will lead to a biased
estimate.

Let’s simulate data from models Equation 8.1 and Equation 8.3 where:

• 𝑍𝑖, 𝑢𝑖, 𝑣𝑖 are i.i.d. and 𝒩(0, 1) (standard normal distribution)
• 𝑛 = 100
• 𝛽1 = 1, 𝛽2 = 2, 𝛽3 = −3, 𝛽4 = −1

set.seed(123) # For reproducibility

Parameters
beta1 = 1
beta2 = 2
beta3 = -3
beta4 = -1
n = 100

Data generation
Z = rnorm(n)
Y_linear = beta1 + beta2 * Z + rnorm(n)
Y_nonlinear = beta1 + beta2 * Z + beta3 * Z^2 + beta4 * Z^3 + rnorm(n)

Linear Case Plot with Regression Line
par(mfrow = c(1, 2))
plot(Z, Y_linear, main = "Linear Relationship")
fit1 = lm(Y_linear ~ Z) # fit simple linear model
abline(fit1, col = "blue") # Add linear regression line

Nonlinear Case Plot with Regression Line
plot(Z, Y_nonlinear, main = "Nonlinear Relationship")
fit2 = lm(Y_nonlinear ~ Z) # fit simple linear model without Z^2
abline(fit2, col = "blue") # Add linear regression line

97

−2 0 1 2

−
2

2
6

Linear Relationship

Z

Y
_l

in
ea

r

−2 0 1 2

−
20

−
10

0

Nonlinear Relationship

Z

Y
_n

on
lin

ea
r

In the left plot, the model is correctly specified, i.e., 𝐸[𝑢𝑖|𝑍𝑖] = 0 holds. In the right plot, the
model is misspecified, i.e., 𝐸[𝑢𝑖|𝑍𝑖] ≠ 0.

This becomes also evident in the residuals versus fitted values plots. The residuals serve as
proxies for the unknown error terms, while the fitted values 𝑌𝑖 = 𝑋𝑋𝑋′

𝑖 ̂𝛽𝛽𝛽 provide a one-dimensional
summary of all regressors.

Residuals that are equally spread around a horizontal line without distinct patterns, as shown
in the left plot below, indicate a correctly specified linear model. When the size or sign of the
residuals systematically depends on the fitted values, as in the right plot below, this suggests
hidden nonlinear relationships between the response and predictors that the model fails to
capture.

Diagnostics plot
par(mfrow = c(1, 2))
plot(fit1, which = 1)
plot(fit2, which = 1)

−2 0 2 4

−
2

0
2

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
64

4974

−4 −2 0 1

−
15

−
5

5

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

44
9770

98

The red solid line indicates a local scatterplot smoother, which is a smooth locally weighted
line through the points on the scatterplot to visualize the general pattern of the data.

8.5.1 Simulation of the linear case

To assess the statistical properties of our estimator, we examine how accurately ̂𝛽2 from Equa-
tion 8.2 estimates the true parameter 𝛽2 in the correctly specified model Equation 8.1.

set.seed(1) # Set seed for reproducibility

True parameter values
beta1 = 1
beta2 = 2

Generate a random sample and compute OLS coefficient beta2-hat
getMCsample = function(n) {
Data generation
Z = rnorm(n)
Y_linear = beta1 + beta2 * Z + rnorm(n)
fit1 = lm(Y_linear ~ Z) # fit simple linear model
Compute and return beta2-hat
fit1$coefficients[2]

}

Number of Monte Carlo repetitions
B = 1000

Function to perform Monte Carlo simulation and calculate Bias, Variance, and MSE for a given sample size
simulate_bias_variance_mse = function(n) {
Generate a Monte Carlo sample of B sample means
MCsample = replicate(B, getMCsample(n))
Calculate Bias, Variance, and MSE
Bias = mean(MCsample) - beta2
Variance = var(MCsample)
MSE = Variance + Bias^2
Return the results as a vector
c(Bias, Variance, MSE)

}

Run the simulation for different sample sizes and store results
result10 = simulate_bias_variance_mse(10)
result20 = simulate_bias_variance_mse(20)

99

result50 = simulate_bias_variance_mse(50)
results = cbind(result10, result20, result50)

Assign names to columns and rows for clarity in the output
colnames(results) = c("n=10", "n=20", "n=50")
rownames(results) = c("Bias", "Variance", "MSE")

Display the results
results

n=10 n=20 n=50
Bias 0.0155187 -0.003998293 -0.001679989
Variance 0.1468236 0.056849539 0.021480276
MSE 0.1470645 0.056865525 0.021483098

• The bias of ̂𝛽2 is close to zero for all sample sizes.
• The variance decreases as 𝑛 increases.
• The MSE decreases with larger 𝑛, which indicates that ̂𝛽2 is a consistent estimator when

the model is correctly specified.

8.5.2 Simulation of the nonlinear case

We now examine how the OLS estimator ̂𝛽2 from the linear model Equation 8.2 performs when
the true data generating process contains nonlinear terms, as specified in Equation 8.3. This
allows us to quantify the bias that arises from omitting the nonlinear terms.

set.seed(1) # Set seed for reproducibility

True parameter values
beta1 = 1
beta2 = 2
beta3 = -3
beta4 = -1

Generate a random sample and compute OLS coefficient beta2-hat
getMCsample = function(n) {
Data generation
Z = rnorm(n)
Y_nonlinear = beta1 + beta2 * Z + beta3 * Z^2 + beta4 * Z^3 + rnorm(n)
fit2 = lm(Y_nonlinear ~ Z) # fit simple linear model without Z^2
Compute and return beta2-hat

100

fit2$coefficients[2]
}

Number of Monte Carlo repetitions
B = 1000

Function to perform Monte Carlo simulation and calculate Bias, Variance, and MSE for a given sample size
simulate_bias_variance_mse = function(n) {
Generate a Monte Carlo sample of B sample means
MCsample = replicate(B, getMCsample(n))
Calculate Bias, Variance, and MSE
Bias = mean(MCsample) - beta2
Variance = var(MCsample)
MSE = Variance + Bias^2
Return the results as a vector
c(Bias, Variance, MSE)

}

Run the simulation for different sample sizes and store results
result10 = simulate_bias_variance_mse(10)
result20 = simulate_bias_variance_mse(20)
result50 = simulate_bias_variance_mse(50)
results = cbind(result10, result20, result50)

Assign names to columns and rows for clarity in the output
colnames(results) = c("n=10", "n=20", "n=50")
rownames(results) = c("Bias", "Variance", "MSE")

Display the results
results

n=10 n=20 n=50
Bias -2.514799 -2.653668 -2.844885
Variance 8.606104 5.340871 2.118467
MSE 14.930317 12.382827 10.211839

• The bias of ̂𝛽2 is substantial and does not decrease with larger 𝑛.
• The variance decreases with larger 𝑛, but the MSE remains high due to the large bias.
• This demonstrates that omitting the relevant nonlinear terms (𝑍2

𝑖 and 𝑍3
𝑖) leads to a

biased and inconsistent estimator of 𝛽2 when the true model is nonlinear.

101

8.6 R-codes

statistics-sec08.R

102

