
9 Marginal effects

9.1 Marginal Effects

Consider the regression model of hourly wage on education (years of schooling),

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2 𝑒𝑑𝑢𝑖 + 𝑢𝑖, 𝑖 = 1, … , 𝑛, (9.1)

where (A1) holds, i.e.:
𝐸[𝑢𝑖|𝑒𝑑𝑢𝑖] = 0.

Population regression function:

𝑚(𝑒𝑑𝑢𝑖) = 𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]
= 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝐸[𝑢𝑖|𝑒𝑑𝑢𝑖]
= 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖

𝑚(𝑒𝑑𝑢𝑖) = 𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖] = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖⏟⏟⏟⏟⏟
=𝑚(𝑒𝑑𝑢𝑖)

+ 𝐸[𝑢𝑖|𝑒𝑑𝑢𝑖]⏟⏟⏟⏟⏟
=0

.

Thus, the average wage level of all individuals with 𝑧 years of schooling is:

𝑚(𝑧) = 𝛽1 + 𝛽2𝑧.
Marginal effect of education:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]
𝜕𝑒𝑑𝑢𝑖

= 𝛽2.

cps = read.csv("cps.csv")
lm(wage ~ education, data = cps)

Call:
lm(formula = wage ~ education, data = cps)

Coefficients:
(Intercept) education

-16.448 2.898
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Interpretation: People with one more year of education are paid on average 2.90 USD more
than people with one year less of education.

The coefficient 𝛽2 describes the correlative relationship between education and wages.

To see this, consider the covariance of the two variables:

𝐶𝑜𝑣(𝑤𝑎𝑔𝑒𝑖, 𝑒𝑑𝑢𝑖) = 𝐶𝑜𝑣(𝛽1 + 𝛽2 𝑒𝑑𝑢𝑖, 𝑒𝑑𝑢𝑖) + 𝐶𝑜𝑣(𝑢𝑖, 𝑒𝑑𝑢𝑖)⏟⏟⏟⏟⏟
=0

= 𝛽2𝑉 𝑎𝑟(𝑒𝑑𝑢𝑖)

Therefore, the coefficient 𝛽2 is proportional to the population correlation coefficient:

𝛽2 = 𝐶𝑜𝑣(𝑤𝑎𝑔𝑒𝑖, 𝑒𝑑𝑢𝑖)
𝑉 𝑎𝑟[𝑒𝑑𝑢𝑖]

= 𝐶𝑜𝑟𝑟(𝑤𝑎𝑔𝑒𝑖, 𝑒𝑑𝑢𝑖) ⋅ 𝑠𝑑(𝑤𝑎𝑔𝑒𝑖)
𝑠𝑑(𝑒𝑑𝑢𝑖)

.

The marginal effect is a correlative effect and does not say where exactly a higher wage level
for people with more education comes from. Regression relationships do not necessarily
imply a causal relationship.

People with more education may earn more for a number of reasons. Maybe they are generally
smarter or come from wealthier families, which leads to better paying jobs. Or maybe more
education actually leads to higher earnings.

Figure 9.1: A DAG (directed acyclic graph) for the correlative and causal effects of edu on
wage

The coefficient 𝛽2 is a measure of how strongly education and earnings are correlated.
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This association could be due to other factors that correlate with both wages and education,
such as family background (parental education, family income, ethnicity, structural racism) or
personal background (gender, intelligence).

Notice: Correlation does not imply causation!

To disentangle the causal effect of education on wages from other correlative effects, we can
include control variables.

9.2 Control Variables

To understand the causal effect of an additional year of education on wages, it is crucial to
consider the influence of family and personal background. These factors, if not included in our
analysis, are known as omitted variables. An omitted variable is one that:

(i) is correlated with the dependent variable (wage, in this scenario),
(ii) is correlated with the regressor of interest (education),
(iii) is omitted in the regression.

The presence of omitted variables means that we cannot be sure that the regression relationship
between education and wages is purely causal. We say that we have omitted variable bias
for the causal effect of the regressor of interest.

The coefficient 𝛽2 in Equation 9.1 measures the correlative or marginal effect, not the causal
effect. This must always be kept in mind when interpreting regression coefficients.

We can include control variables in the linear regression model to reduce omitted variable
bias so that we can interpret 𝛽2 as a ceteris paribus marginal effect (ceteris paribus means
holding other variables constant).

For example, let’s include years of experience as well as racial background and gender dummy
variables for Black and female:

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝛽3𝑒𝑥𝑝𝑒𝑟𝑖 + 𝛽4𝐵𝑙𝑎𝑐𝑘𝑖 + 𝛽5𝑓𝑒𝑚𝑖 + 𝑢𝑖.

In this case,
𝛽2 = 𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖, 𝑒𝑥𝑝𝑒𝑟𝑖, 𝐵𝑙𝑎𝑐𝑘𝑖, 𝑓𝑒𝑚𝑖]

𝜕𝑒𝑑𝑢𝑖
is the marginal effect of education on expected wages, holding experience, race, and gender
fixed.

lm(wage ~ education + experience + black + female, data = cps)
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Call:
lm(formula = wage ~ education + experience + black + female,

data = cps)

Coefficients:
(Intercept) education experience black female

-21.7095 3.1350 0.2443 -2.8554 -7.4363

Interpretation: Given the same experience, racial background, and gender, people with one
more year of education are paid on average 3.14 USD more than people with one year less of
education.

Note: It does not hold other unobservable characteristics (such as ability) or variables not
included in the regression (such as quality of education) fixed, so an omitted variable bias may
still be present.

Good control variables are variables that are determined before the level of education is deter-
mined. Control variables should not be the cause of the dependent variable of interest.

Examples of good controls for education are parental education level, region of residence, or
educational industry/field of study.

A problematic situation is when the control variable is the cause of education. Bad controls
are typically highly correlated with the independent variable of interest and irrelevant to the
causal effect of that variable on the dependent variable.

Examples of bad controls for education are current job position, number of professional
certifications obtained, or number of job offers.

A high correlation of the bad control with the variable education also causes a high variance of
the OLS coefficient for education and leads to an imprecise coefficient estimate. This problem
is called imperfect multicollinearity.

Bad controls make it difficult to interpret causal relationships. They may control away the
effect you want to measure, or they may introduce additional reverse causal effects hidden in
the regression coefficients.

9.3 CASchools: class size effect

Recall the CASchools dataset used in the Stock and Watson textbook in sections 4-8.

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2
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We are interested in the effect of the student-teacher ratio STR (class size) on the average test
score score conditional on different control variables such as:

• english: proportion of students whose primary language is not English.
• lunch: proportion of students eligible for free/reduced-price meals.
• expenditure: total expenditure per pupil.

cor(CASchools[,c("STR", "score", "english", "lunch", "expenditure")])

STR score english lunch expenditure
STR 1.0000000 -0.2263627 0.18764237 0.13520340 -0.61998216
score -0.2263627 1.0000000 -0.64412381 -0.86877199 0.19127276
english 0.1876424 -0.6441238 1.00000000 0.65306072 -0.07139604
lunch 0.1352034 -0.8687720 0.65306072 1.00000000 -0.06103871
expenditure -0.6199822 0.1912728 -0.07139604 -0.06103871 1.00000000

The sample correlation matrix indicates that english, lunch and expenditure are correlated
with STR and score, which implies these variables could confound the relationship of STR on
score (omitted variable bias).

fit1 = lm(score ~ STR, data = CASchools)
fit2 = lm(score ~ STR + english, data = CASchools)
fit3 = lm(score ~ STR + english + lunch, data = CASchools)
fit4 = lm(score ~ STR + english + lunch + expenditure, data = CASchools)
library(stargazer)

stargazer(fit1, fit2, fit3, fit4, type="latex", report="vc*", omit.stat = "f",
star.cutoffs = NA, header = FALSE)

Interpretations:

• Model (1): Between two classes that differ by one student, the class with more students
scores on average 2.280 points lower.

• Model (2): Between two classes that differ by one student but have the same share of
English learners, the larger class scores on average 1.101 points lower.

• Model (3): Between two classes that differ by one student but have the same share of
English learners and students with reduced meals, the larger class scores on average 0.998
points lower.
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Table 9.1

Dependent variable:
score

(1) (2) (3) (4)
STR −2.280 −1.101 −0.998 −0.235

english −0.650 −0.122 −0.128

lunch −0.547 −0.546

expenditure 0.004

Constant 698.933 686.032 700.150 665.988

Observations 420 420 420 420
R2 0.051 0.426 0.775 0.783
Adjusted R2 0.049 0.424 0.773 0.781
Residual Std. Error 18.581 (df = 418) 14.464 (df = 417) 9.080 (df = 416) 8.910 (df = 415)

Note: NA
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• Model (4): Between two classes that differ by one student but have the same share
of English learners, students with reduced meals, and per-pupil expenditure, the larger
class scores on average 0.235 points lower.

The variables english and lunch are good controls because they are likely determined
before class size decisions and capture important student background characteristics. These
pre-existing factors can influence both class size assignments (as schools might create smaller
classes for disadvantaged students) and test scores.

Per-pupil expenditure, however, is a bad control because it is likely determined simul-
taneously with or after class size decisions. Smaller classes mechanically increase per-pupil
expenditure through higher teacher salary costs per student. Including expenditure there-
fore “controls away” part of the class size effect we aim to measure, which leads to potential
underestimation of the true effect.

9.4 Polynomials

A linear dependence on wages and experience is a strong assumption. We can reasonably
expect a nonlinear marginal effect of another year of experience on wages. For example, the
effect may be higher for workers with 5 years of experience than for those with 40 years of
experience.

Polynomials can be used to specify a nonlinear regression function:

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2𝑒𝑥𝑝𝑒𝑟𝑖 + 𝛽3𝑒𝑥𝑝𝑒𝑟2
𝑖 + 𝛽4𝑒𝑥𝑝𝑒𝑟3

𝑖 + 𝑢𝑖.

## we focus on people with Asian background only for illustration
cps.as = cps |> subset(asian == 1)
fit = lm(wage ~ experience + I(experience^2) + I(experience^3),

data = cps.as)
beta = fit$coefficients
beta

(Intercept) experience I(experience^2) I(experience^3)
20.4547146896 1.2013241316 -0.0446897909 0.0003937551

## Scatterplot
plot(wage ~ experience, data = cps.as, ylim = c(0,100))
## plot the cubic function for fitted wages
curve(
beta[1] + beta[2]*x + beta[3]*x^2 + beta[4]*x^3,
from = 0, to = 70, add=TRUE, col='red', lwd=2
)
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The marginal effect depends on the years of experience:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑥𝑝𝑒𝑟𝑖]
𝜕𝑒𝑥𝑝𝑒𝑟𝑖

= 𝛽2 + 2𝛽3𝑒𝑥𝑝𝑒𝑟𝑖 + 3𝛽4𝑒𝑥𝑝𝑒𝑟2
𝑖 .

For instance, the additional wage for a worker with 11 years of experience compared to a
worker with 10 years of experience is on average

1.43 + 2 ⋅ (−0.042) ⋅ 10 + 3 ⋅ 0.0003 ⋅ 102 = 0.68.

9.5 Interactions

A linear regression with interaction terms:

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝛽3𝑓𝑒𝑚𝑖 + 𝛽4𝑚𝑎𝑟𝑟𝑖 + 𝛽5(𝑚𝑎𝑟𝑟𝑖 ⋅ 𝑓𝑒𝑚𝑖) + 𝑢𝑖

lm(wage ~ education + female + married + married:female, data = cps)

Call:
lm(formula = wage ~ education + female + married + married:female,

data = cps)

Coefficients:
(Intercept) education female married female:married

-17.886 2.867 -3.266 7.167 -5.767
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The marginal effect of gender depends on the person’s marital status:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖]
𝜕𝑓𝑒𝑚𝑎𝑙𝑒𝑖

= 𝛽3 + 𝛽5𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖

Interpretation: Given the same education, unmarried women are paid on average 3.27 USD
less than unmarried men, and married women are paid on average 3.27+5.77=9.04 USD less
than married men.

The marginal effect of the marital status depends on the person’s gender:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖]
𝜕𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖

= 𝛽4 + 𝛽5𝑓𝑒𝑚𝑎𝑙𝑒𝑖

Interpretation: Given the same education, married men are paid on average 7.17 USD more
than unmarried men, and married women are paid on average 7.17-5.77=1.40 USD more than
unmarried women.

9.6 Logarithms

When analyzing wage data, we often use logarithmic transformations because they help model
proportional relationships and reduce the skewness of the typically right-skewed distribution
of wages. A common specification is the log-linear model, where we take the logarithm of
wages while keeping education in its original scale:

In the logarithmic specification

log(𝑤𝑎𝑔𝑒𝑖) = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝑢𝑖

we have
𝜕𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖]

𝜕𝑒𝑑𝑢𝑖
= 𝛽2.

This implies
𝜕𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟

absolute
change

= 𝛽2 ⋅ 𝜕𝑒𝑑𝑢𝑖⏟
absolute
change

.

That is, 𝛽2 gives the average absolute change in log-wages when education changes by 1.

Another interpretation can be given in terms of relative changes. Consider the following
approximation:

𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖] ≈ exp(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖]).
The left-hand expression is the conventional conditional mean, and the right-hand expression
is the geometric mean. The geometric mean is slightly smaller because 𝐸[log(𝑌 )] < log(𝐸[𝑌 ]),
but this difference is small unless the data is highly skewed.
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The marginal effect of a change in 𝑒𝑑𝑢 on the geometric mean of 𝑤𝑎𝑔𝑒 is
𝜕𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])

𝜕𝑒𝑑𝑢𝑖
= 𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

outer derivative

⋅𝛽2.

Using the geometric mean approximation from above, we get
𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]
𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]⏟⏟⏟⏟⏟⏟⏟

percentage
change

≈ 𝜕𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])
𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])

= 𝛽2 ⋅ 𝜕𝑒𝑑𝑢𝑖⏟
absolute
change

.

linear_model = lm(wage ~ education, data = cps.as)
log_model = lm(log(wage) ~ education, data = cps.as)
log_model

Call:
lm(formula = log(wage) ~ education, data = cps.as)

Coefficients:
(Intercept) education

1.3783 0.1113

plot(wage ~ education, data = cps.as, ylim = c(0,80), xlim = c(4,22))
abline(linear_model, col="blue")
coef = coefficients(log_model)
curve(exp(coef[1]+coef[2]*x), add=TRUE, col="red")
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Interpretation: A person with one more year of education has a wage that is 11.13% higher on
average.

In addition to the linear-linear and log-linear specifications, we also have the linear-log speci-
fication

𝑌 = 𝛽1 + 𝛽2 log(𝑋) + 𝑢
and the log-log specification

log(𝑌 ) = 𝛽1 + 𝛽2 log(𝑋) + 𝑢.

Linear-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 0.01𝛽2 higher 𝑌 .

Log-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 𝛽2% higher 𝑌 .

9.7 CASchools: nonlinear specifications

Let’s have a look at an example that explores the relationship between the income of schooling
districts and their test scores.

We start our analysis by computing the correlation between both variables.

cor(CASchools$income, CASchools$score)

[1] 0.7124308

Income and test score are positively correlated: school districts with above-average income
tend to achieve above-average test scores. But does a linear regression adequately model the
data? To investigate this further, let’s visualize the data by plotting them and adding a linear
regression line.

# Create scatterplot
plot(score ~ income, data = CASchools,

xlab = "District Income (thousands of USD)",
ylab = "Test Score")

# Fit linear model and add regression line
linear = lm(score ~ income, data = CASchools)
abline(linear, col = "red", lwd = 2)
# Add legend
legend("bottomright", "Linear fit", col = "red", lwd = 2)
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The plot shows that the linear regression line seems to overestimate the true relationship when
income is either very high or very low and it tends to underestimates it for the middle income
group. Luckily, OLS isn’t limited to linear regressions of the predictors. We have the flexibility
to model test scores as a function of income and the square of income.

This leads us to the following regression model:

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝛽1 + 𝛽2 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + 𝛽3 𝑖𝑛𝑐𝑜𝑚𝑒2
𝑖 + 𝑢𝑖

which is a quadratic regression model. Here we treat 𝑖𝑛𝑐𝑜𝑚𝑒2 as an additional explanatory
variable.

# fit the quadratic Model
quad = lm(score ~ income + I(income^2), data = CASchools)
quad

Call:
lm(formula = score ~ income + I(income^2), data = CASchools)

Coefficients:
(Intercept) income I(income^2)
607.30174 3.85099 -0.04231

The estimated function is

𝑠𝑐𝑜𝑟𝑒 = 607.3 + 3.85 𝑖𝑛𝑐𝑜𝑚𝑒 − 0.0423 𝑖𝑛𝑐𝑜𝑚𝑒2
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# Create scatterplot
plot(score ~ income, data = CASchools,

xlab = "District Income (thousands)",
ylab = "Test Score")

# Add fitted curves
curve(coef(linear)[1] + coef(linear)[2]*x, add = TRUE, col = "red", lwd=2)
curve(coef(quad)[1] + coef(quad)[2]*x + coef(quad)[3]*x^2, add = TRUE, col = "blue", lwd=2)

# Add legend
legend("bottomright", c("Quadratic", "Linear"), col = c("blue", "red"), lwd = 2)
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As the plot shows, the quadratic function appears to provide a better fit to the data compared
to the linear function.

Another approach to estimate a concave nonlinear regression function involves using a loga-
rithmic regressor.

# estimate a level-log model
linlog = lm(score ~ log(income), data = CASchools)
linlog

Call:
lm(formula = score ~ log(income), data = CASchools)

Coefficients:
(Intercept) log(income)

557.83 36.42

115



The estimated regression model is

𝑠𝑐𝑜𝑟𝑒 = 557.8 + 36.42 log(𝑖𝑛𝑐𝑜𝑚𝑒)

# Create scatterplot
plot(score ~ income, data = CASchools,

xlab = "Income", ylab = "Score")

# Add fitted curves
curve(coef(linlog)[1] + coef(linlog)[2]*log(x), add = TRUE, col = "blue", lwd = 2)
curve(coef(linear)[1] + coef(linear)[2]*x, add = TRUE, col = "red", lwd = 2)

# Add legend
legend("bottomright", c("Linear-log", "Linear"), col = c("blue", "red"), lwd = 2)

10 20 30 40 50

62
0

66
0

70
0

Income

S
co

re

Linear−log
Linear

We can interpret ̂𝛽2 as follows: a 1% increase in income is associated with an average increase
in test scores of 0.01 ⋅ 36.42 = 0.36 points.

9.8 R-codes

statistics-sec09.R
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